Законы логики примеры и решения

Истинное знание во все времена основывалось на установлении закономерности и доказательстве её правдивости в определенных обстоятельствах. За столь длительный срок существования логических рассуждений были даны формулировки правил, а Аристотель даже составил список «правильных рассуждений». Исторически принято делить все умозаключения на два типа – от конкретного к множественному (индукция) и наоборот (дедукция). Следует отметить, что типы доказательств от частного к общему и от общего к частному существуют только во взаимосвязи и не могут быть взаимозаменяемы.

Термин «индукция» (induction) имеет латинские корни и дословно переводится как «наведение». При пристальном изучении можно выделить структуру слова, а именно латинскую приставку – in- (обозначает направленное действие внутрь или нахождение внутри) и -duction – введение. Стоит отметить, что существует два вида – полная и неполная индукции. Полную форму характеризуют выводы, сделанные на основании изучения всех предметов некоторого класса.

Неполную – выводы, применяемые ко всем предметам класса, но сделанные на основании изучения только некоторых единиц.

Полная математическая индукция – умозаключение, базирующееся на общем выводе обо всем классе каких-либо предметов, функционально связанных отношениями натурального ряда чисел на основании знания этой функциональной связи. При этом процесс доказательства проходит в три этапа:

  • на первом доказывается правильность положения математической индукции. Пример: f = 1, это базис индукции;
  • следующий этап строится на предположении о правомерности положения для всех натуральных чисел. То есть, f=h, это предположение индукции;
  • на третьем этапе доказывается справедливость положения для числа f=h+1, на основании верности положения предыдущего пункта – это индукционный переход, или шаг математической индукции. Примером может служить так называемый «принцип домино»: если падает первая косточка в ряду (базис), то упадут все косточки в ряду (переход).

Для простоты восприятия примеры решения методом математической индукции обличают в форму задач-шуток. Таковой является задача «Вежливая очередь»:

Ярким примером метода математической индукции является задача «Безразмерный рейс»:

  • Требуется доказать, что в маршрутку помещается любая численность людей. Правдиво утверждение, что один человек может разместиться внутри транспорта без затруднений (базис). Но как бы ни была заполнена маршрутка, 1 пассажир в нее всегда поместится (шаг индукции).

Примеры решения методом математической индукции задач и уравнений встречаются довольно часто. Как иллюстрацию такого подхода, можно рассмотреть следующую задачу.

Условие: на плоскости размещено h окружностей. Требуется доказать, что при любом расположении фигур образуемая ими карта может быть правильно раскрашена двумя красками.

Решение: при h=1 истинность утверждения очевидна, поэтому доказательство будет строиться для количества окружностей h+1.

Примем допущение, что утверждение достоверно для любой карты, а на плоскости задано h+1 окружностей. Удалив из общего количества одну из окружностей, можно получить правильно раскрашенную двумя красками (черной и белой) карту.

При восстановлении удаленной окружности меняется цвет каждой области на противоположный (в указанном случае внутри окружности). Получается карта, правильно раскрашенная двумя цветами, что и требовалось доказать.

Ниже наглядно показано применение метода математической индукции.

Доказать, что при любом h правильным будет равенство:

Rd+1= 1 2 +2 2 +3 2 +…+d 2 +(d+1) 2 = d(d+1)(2d+1)/6+ (d+1) 2 =(d(d+1)(2d+1)+6(d+1) 2 )/6=(d+1)(d(2d+1)+6(k+1))/6=

Таким образом, справедливость равенства при h=d+1 доказана, поэтому утверждение верно для любого натурального числа, что и показано в примере решения математической индукцией.

Условие: требуется доказательство того, что при любом значении h выражение 7 h -1 делимо на 6 без остатка.

Следовательно, при h=1 утверждение является справедливым;

3. Доказательством справедливости утверждения для h=d+1 является формула:

В данном случае первое слагаемое делится на 6 по допущению первого пункта, а второе слагаемое равно 6. Утверждение о том, что 7 h -1 делимо на 6 без остатка при любом натуральном h – справедливо.

Часто в доказательствах используют неверные рассуждения, в силу неточности используемых логических построений. В основном это происходит при нарушении структуры и логики доказательства. Примером неверного рассуждения может служить такая иллюстрация.

Условие: требуется доказательство того, что любая куча камней – не является кучкой.

1. Допустим, h=1, в этом случае в кучке 1 камень и утверждение верно (базис);

2. Пусть при h=d верно, что куча камней – не является кучкой (предположение);

3. Пусть h=d+1, из чего следует, что при добавлении еще одного камня множество не будет являться кучкой. Напрашивается вывод, что предположение справедливо при всех натуральных h.

Ошибка заключается в том, что нет определения, какое количество камней образует кучку. Такое упущение называется поспешным обобщением в методе математической индукции. Пример это ясно показывает.

Исторически сложилось так, что примеры индукции и дедукции всегда «шагают рука об руку». Такие научные дисциплины как логика, философия описывают их в виде противоположностей.

С точки зрения закона логики в индуктивных определениях просматривается опора на факты, а правдивость посылок не определяет правильность получившегося утверждения. Зачастую получаются умозаключения с определенной долей вероятности и правдоподобности, которые, естественно, должны быть проверены и подтверждены дополнительными исследованиями. Примером индукции в логике может быть утверждение:

В Эстонии – засуха, в Латвии – засуха, в Литве – засуха.

Эстония, Латвия и Литва – прибалтийские государства. Во всех прибалтийских государствах засуха.

Из примера можно заключить, что новую информацию или истину нельзя получить при помощи метода индукции. Все, на что можно рассчитывать – это некоторая возможная правдивость выводов. Причем, истинность посылок не гарантирует таких же заключений. Однако данный факт не обозначает, что индукция прозябает на задворках дедукции: огромное множество положений и научных законов обосновываются при помощи метода индукции. Примером может служить та же математика, биология и другие науки. Связано это по большей части с методом полной индукции, но в некоторых случаях применима и частичная.

Почтенный возраст индукции позволил ей проникнуть практически во все сферы деятельности человека – это и наука, и экономика, и житейские умозаключения.

Метод индукции требует щепетильного отношения, поскольку слишком многое зависит от количества изученных частностей целого: чем большее число изучено, тем достовернее результат. Исходя из этой особенности, научные законы, полученные методом индукции, достаточно долго проверяются на уровне вероятностных предположений для вычленения и изучения всех возможных структурных элементов, связей и воздействий.

В науке индукционное заключение основывается на значимых признаках, с исключением случайных положений. Данный факт важен в связи со спецификой научного познания. Это хорошо видно на примерах индукции в науке.

Различают два вида индукции в научном мире (в связи со способом изучения):

  1. индукция-отбор (или селекция);
  2. индукция – исключение (элиминация).

Первый вид отличается методичным (скрупулезным) отбором образцов класса (подклассов) из разных его областей.

Пример индукции этого вида следующий: серебро (или соли серебра) очищает воду. Вывод основывается на многолетних наблюдениях (своеобразный отбор подтверждений и опровержений – селекция).

Второй вид индукции строится на выводах, устанавливающих причинные связи и исключающих обстоятельства, не отвечающие ее свойствам, а именно всеобщность, соблюдение временной последовательности, необходимость и однозначность.

Если взглянуть на историческую ретроспективу, то термин «индукция» впервые был упомянут Сократом. Аристотель описывал примеры индукции в философии в более приближенном терминологическом словаре, но вопрос неполной индукции остается открытым. После гонений на аристотелевский силлогизм индуктивный метод стал признаваться плодотворным и единственно возможным в естествознании. Отцом индукции как самостоятельного особого метода считают Бэкона, однако ему не удалось отделить, как того требовали современники, индукцию от дедуктивного метода.

Дальнейшей разработкой индукции занимался Дж. Милль, который рассматривал индукционную теорию с позиции четырех основных методов: согласия, различия, остатков и соответствующих изменений. Неудивительно, что на сегодняшний день перечисленные методы при их детальном рассмотрении являются дедуктивными.

Осознание несостоятельности теорий Бэкона и Милля привело ученых к исследованию вероятностной основы индукции. Однако и здесь не обошлось без крайностей: были предприняты попытки свести индукцию к теории вероятности со всеми вытекающими последствиями.

Вотум доверия индукция получает при практическом применении в определенных предметных областях и благодаря метрической точности индуктивной основы. Примером индукции и дедукции в философии можно считать Закон всемирного тяготения. На дату открытия закона Ньютону удалось проверить его с точностью в 4 процента. А при проверке спустя более двухсот лет правильность была подтверждена с точностью до 0,0001 процента, хотя проверка велась все теми же индуктивными обобщениями.

Современная философия больше внимания уделяет дедукции, что продиктовано логичным желанием вывести из уже известного новые знания (или истины), не обращаясь к опыту, интуиции, а оперируя «чистыми» рассуждениями. При обращении к истинным посылкам в дедуктивном методе во всех случаях на выходе получается истинное утверждение.

Эта очень важная характеристика не должна затмевать ценность индуктивного метода. Поскольку индукция, опираясь на достижения опыта, становится и средством его обработки (включая обобщение и систематизацию).

Индукция и дедукция давно используются как методы исследования экономики и прогнозирования ее развития.

Спектр использования метода индукции достаточно широк: изучение выполнения прогнозных показателей (прибыли, амортизация и т. д.) и общая оценка состояния предприятия; формирование эффективной политики продвижения предприятия на основе фактов и их взаимосвязей.

Тот же метод индукции применен в «картах Шухарта», где при предположении о разделении процессов на управляемые и неуправляемые утверждается, что рамки управляемого процесса малоподвижны.

Следует отметить, что научные законы обосновываются и подтверждаются при помощи метода индукции, а поскольку экономика является наукой, часто пользующейся математическим анализом, теорией рисков и статистическими данными, то совершенно неудивительно присутствие индукции в списке основных методов.

Примером индукции и дедукции в экономике может служить следующая ситуация. Увеличение цены на продукты питания (из потребительской корзины) и товары первой необходимости подталкивают потребителя к мысли о возникающей дороговизне в государстве (индукция). Вместе с тем, из факта дороговизны при помощи математических методов можно вывести показатели роста цен на отдельные товары или категории товаров (дедукция).

Чаще всего обращается к методу индукции управляющий персонал, руководители, экономисты. Для того чтобы можно было с достаточной правдивостью прогнозировать развитие предприятия, поведение рынка, последствия конкуренции, необходим индукционно-дедуктивный подход к анализу и обработке информации.

Наглядный пример индукции в экономике, относящийся к ошибочным суждениям:

  • прибыль компании сократилась на 30%;
    конкурирующая компания расширила линейку продукции;
    больше ничего не изменилось;
  • производственная политика конкурирующей компании стала причиной сокращения прибыли на 30%;
  • следовательно, требуется внедрить такую же производственную политику.

Пример является красочной иллюстрацией того, как неумелое использование метода индукции способствует разорению предприятия.

Поскольку существует метод, то, по логике вещей, имеет место и должным образом организованное мышление (для использования метода). Психология как наука, изучающая психические процессы, их формирование, развитие, взаимосвязи, взаимодействия, уделяет внимание «дедуктивному» мышлению, как одной из форм проявления дедукции и индукции. К сожалению, на страницах по психологии в сети Интернет практически отсутствует обоснование целостности дедуктивно-индуктивного метода. Хотя профессиональные психологи чаще сталкиваются с проявлениями индукции, а точнее – ошибочными умозаключениями.

Примером индукции в психологии, как иллюстрации ошибочных суждений, может служить высказывание: моя мать – обманывает, следовательно, все женщины – обманщицы. Еще больше можно почерпнуть «ошибочных» примеров индукции из жизни:

  • учащийся ни на что не способен, если получил двойку по математике;
  • он – дурак;
  • он – умный;
  • я могу все;

— и многие другие оценочные суждения, выведенные на абсолютно случайных и, порой, малозначительных посылах.

Следует отметить: когда ошибочность суждений человека доходит до абсурда, появляется фронт работы для психотерапевта. Один из примеров индукции на приеме у специалиста:

«Пациент абсолютно уверен в том, что красный цвет несет для него только опасность в любых проявлениях. Как следствие, человек исключил из своей жизни данную цветовую гамму — насколько это возможно. В домашней обстановке возможностей для комфортного проживания много. Можно отказаться от всех предметов красного цвета или заменить их на аналоги, выполненные в другой цветовой гамме. Но в общественных местах, на работе, в магазине – невозможно. Попадая в ситуацию стресса, пациент каждый раз испытывает «прилив» абсолютно разных эмоциональных состояний, что может представлять опасность для окружающих».

Этот пример индукции, причем неосознанной, называется «фиксированные идеи». В случае если такое происходит с психически здоровым человеком, можно говорить о недостатке организованности мыслительной деятельности. Способом избавления от навязчивых состояний может стать элементарное развитие дедуктивного мышления. В иных случаях с такими пациентами работают психиатры.

Приведенные примеры индукции свидетельствуют о том, что «незнание закона не освобождает от последствий (ошибочных суждений)».

Психологи, работая над темой дедуктивного мышления, составили список рекомендаций, призванный помочь людям освоить данный метод.

Первым пунктом значится решение задач. Как можно было убедиться, та форма индукции, которая употребляется в математике, может считаться «классической», и использование этого метода способствует «дисциплинированности» ума.

Следующим условием развития дедуктивного мышления является расширение кругозора (кто ясно мыслит, тот ясно излагает). Данная рекомендация направляет «страждущих» в скарбницы наук и информации (библиотеки, сайты, образовательные инициативы, путешествия и т. д.).

Точность является следующей рекомендацией. Ведь из примеров использования методов индукции хорошо видно, что именно она является во многом залогом истинности утверждений.

Не обошли стороной и гибкость ума, подразумевая возможность использования разных путей и подходов в решении поставленной задачи, а также учета вариативности развития событий.

И, конечно же, наблюдательность, которая является главным источником накопления эмпирического опыта.

Отдельно следует упомянуть о так называемой «психологической индукции». Этот термин, хотя и нечасто, можно встретить на просторах интернета. Все источники не дают хотя бы краткую формулировку определения этого термина, но ссылаются на «примеры из жизни», при этом выдавая за новый вид индукции то суггестию, то некоторые формы психических заболеваний, то крайние состояния психики человека. Из всего перечисленного понятно, что попытка вывести «новый термин», опираясь на ложные (зачастую не соответствующие действительности) посылки, обрекает экспериментатора на получение ошибочного (или поспешного) утверждения.

Следует отметить, что отсылка к экспериментам 1960 года (без указания места проведения, фамилий экспериментаторов, выборки испытуемых и самое главное – цели эксперимента) выглядит, мягко говоря, неубедительно, а утверждение о том, что мозг воспринимает информацию, минуя все органы восприятия (фраза «испытывает воздействие» в данном случае вписалась бы более органично), заставляет задуматься над легковерностью и некритичностью автора высказывания.

Царица наук – математика, не зря использует все возможные резервы метода индукции и дедукции. Рассмотренные примеры позволяют сделать вывод о том, что поверхностное и неумелое (бездумное, как еще говорят) применение даже самых точных и надежных методов приводит всегда к ошибочным результатам.

В массовом сознании метод дедукции ассоциируется со знаменитым Шерлоком Холмсом, который в своих логических построениях чаще использует примеры индукции, в нужных ситуациях пользуясь дедукцией.

В статье были рассмотрены примеры применения этих методов в различных науках и сферах жизнедеятельности человека.

fb.ru

1) Судимость – абстрактное, положительное, безотносительное, собирательное, пустое, общее, атрибутивное.

2) Поджог – конкретное, положительное, соотносительное, не собирательное, пустое, общее, атрибутивное.

Определите отношения между понятиями и выразите эти отношения с помощью круговых схем:

1) Правоотношение, общественное отношение, семейное отношение;

1) Правоотношение, общественное отношение, семейное отношение

1) Семейное право – российское семейное право – региональное российское семейно право – районное российское семейное право.

2) Государственный служащий – административный государственный служащий – временный административный государственный служащий

Укажите правильность следующих определений (в неправильных укажите, какое правило нарушено):

2) Правонарушение — родовое понятие, означающее любое деяние, нарушающее какие-либо нормы права.

Данное определение неправильное, в нем нарушено правило соразмерности

2) Правонарушение – родовое понятие, означающее любое деяние, нарушающее какие-либо нормы права

Данное определение неправильное, в нем нарушено правило ясности. Определение «родовое понятие» само нуждается в определении

1) Право собственности включает в себя владение и распоряжение вещью.

1. Здесь нарушено правило соразмерности. Данное деление неполное, т.к. отсутствует право пользования.

Определите вид суждения, приведите схему атрибутивных суждений и суждений с отношением:

1) Каждый юрист знает некоторого философа лучше, чем знаменитого логика.

2)Есть люди, которые, зная, что делать, не делают того, что нужно.

1) Каждый юрист знает некоторого философа лучше, чем знаменитого логика.

2) Есть люди, которые, зная, что делать, не делают того, что нужно.

Запись атрибутивного суждения: S-P, где S – субъект суждения, Р – предикат суждения, «-« — связка.

Запись суждения с отношениями: xRy, где х и y – члены отношения, они обозначают понятия о предметах, R – отношение между ними.

mirznanii.com

  1. Обучающие:
    1. Изучить основные законы логики
    2. Научить преобразовывать логические выражения, используя логические законы
    3. Ввести понятие “нормальная форма логической формулы”
    4. Закрепить навыки упрощения логических выражений, используя логические законы
    5. Научить решать логические задачи
    6. Закрепить навыки решения логических задач
  2. Развивающие:
    1. Развивать логическое мышление
    2. Развивать внимание
    3. Развивать память
    4. Развивать речь учащихся
  3. Воспитывающие:
    1. Воспитывать умение слушать учителя и одноклассников
    2. Воспитывать аккуратность ведения тетради
    3. Воспитывать дисциплинированность

Здравствуйте, ребята. Мы продолжаем изучать основы логики и тема нашего сегодняшнего урока «Законы логики и правила преобразования логических выражений». Изучив данную тему, вы узнаете, основные законы логики, научитесь упрощать логические выражения, используя логические законы, решать логические задачи

Откройте свои тетради там, где вы выполняли домашнюю работу, я пройду посмотрю

В алгебре логики имеется ряд законов, позволяющих производить равносильные преобразования логических выражений. Приведем соотношения, отражающие эти законы.

Результат операции над высказываниями не зависит от того, в каком порядке берутся эти высказывания.

При одинаковых знаках скобки можно ставить произвольно или вообще опускать.

В обычной алгебре: (2 + 3) + 4 = 2 + (3 + 4) = 2 + 3 + 4, 5 ? (6 ? 7) = 5 ? (6 ? 7) = 5 ? 6 ? 7.

Определяет правило выноса общего высказывания за скобку.

Невозможно, чтобы противоречащие высказывания были одновременно истинными.

Формула имеет нормальную форму, если в ней отсут­ствуют знаки эквивалентности, импликации, двойного от­рицания, при этом знаки отрицания находятся только при переменных.

Упростим левую часть равенства. Какими законами воспользуемся? Для преобразования левой части равенства последовательно воспользуемся законом де Моргана для логического сложения и законом двойного отрицания:

Согласно распределительному закону для логического сложения:

Согласно закону исключения третьего и закона исключения констант:

Посмотрите на выражение, посмотрите на законы, что можно сделать?

Согласно закону общей инверсии для логического сложения (первому закону Моргана) и закону двойного отрицания:

Согласно распределительному (дистрибутивному) закону для логического сложения:

(A U B U C)&( &B& ) = (A& ) U (B& ) U (C& ) U (A&B) U (B&B) U (C&B) U (A& ) U (B& ) U (C& )

Подставляем значения и, используя переместительный (коммутативный) закон и группируя слагаемые, получаем:

Согласно закона исключения констант для логического сложения и закона идемпотентности:

Сегодня мы продолжаем изучать тему “Законы логики и правила преобразования логических выражений”. Будем упрощать выражения и учиться решать логические задачи

Но для начала проверим как вы выполнили домашнее задание (1 ученик у доски, остальные показывают в тетрадях).

Чтобы проверить правильность упрощения, нужно построить таблицы истинности для исходного и полученного логического выражения. Результирующие столбцы должны совпадать.

2. Логическое выражение называется тождественно – ложным, если оно принимает значения 0 на всех наборах входящих в него простых высказываний.

Упростить выражение и показать, что оно тождественно – ложное

2.Логическое выражение называется тождественно – истинным, если оно принимает значения 1 на всех наборах входящих в него простых высказываний.

Упростить выражение и показать, что оно тождественно – истинное

3.Переведите к виду логической формулы вы­сказывание: «Неверно, что если погода пасмурная, то дождь идет тогда и только тогда, когда нет ветра».

Тогда соответствующее логическое выражение запишется так:

Перейдем к решению логических задач. Логические задачи обычно формулируются на естествен­ном языке. В первую очередь их необходимо формализовать, то есть записать на языке алгебры высказываний. Полученные логические выражения необходимо упростить и проанализировать. Для этого иногда бывает необходимо построить таблицу истинности полученного логического выражения. Несложные задачи решаются путем логических рассуждений.

В школе-новостройке в каждой из двух аудиторий может находиться либо кабинет информатики, либо кабинет физики. На дверях аудиторий повесили шутливые таблички. На первой повесили табличку «По крайней мере, в одной из этих аудиторий размешается кабинет информатики», а на второй аудитории — табличку с надписью «Кабинет физики находится в другой аудитории». Проверяющему, который пришел в школу, известно только, что надписи на табличках либо обе истинны, либо обе ложны. Помогите проверяющему найти кабинет информатики.

Переведем условие задачи на язык логики высказывании. Так как в каждой из аудиторий может находиться кабинет информатики, то пусть:

А = «В первой аудитории находится кабинет информатики»;
В = «Во второй аудитории находится кабинет информатики».

А = «В первой аудитории находится кабинет физики»;
В = «Bo второй аудитории находится кабинет физики».

Высказывание, содержащееся на табличке на двери первой аудитории, соответствует логическому выражению:

Высказывание, содержащееся на табличке на двери вто­рой аудитории, соответствует логическому выражению:

Содержащееся в условии задачи утверждение о том, что надписи на табличках либо одновременно истинные, либо одновременно ложные в соответствии с законом исключен­ного третьего записывается следующим образом:

Упростим сначала первое слагаемое. В соответствии с законом дистрибутивности умножения относительно сложения:

Упростим теперь второе слагаемое. В соответствии с первым законом де Моргана и законом двойного отрицания:

Для того чтобы выполнялось равенство В & А = 1, В и А должны быть равны 1, то есть соответствующие им высказывания истинны.

Ответ: В первой аудитории находится кабинет физики, а во второй — кабинет информатики.

5. Упростить логические выражения. Правильность упрощения логических выражений проверить с помощью таблиц истинности для исходных и полученных логических формул.

В процессе составления расписания уроков учителя высказали свои пожелания. Учитель математики, высказал пожелание про­водить первый или второй урок, учитель информатики — первый или третий, а учитель физики второй или третий урок. Сколько существует возможных вариантов расписания и каковы они?

Продолжаем решать задачи и упрощать логические выражения

Кто из учеников А, В, С и D играет, а кто не играет в шахматы, если известно следующее:

  • а) если А или В играет, то С не играет;
  • б) если В не играет, то играют С и D;
  • в) С играет
  • А — «ученик А играет в шахматы»;
  • В — «ученик В играет в шахматы»;
  • С — «ученик С играет в шахматы»;
  • D — «ученик D играет в шахматы».

Запишем произведение указанных сложных высказываний:

((A v В) > С) & (В > С & D) & С = ((А v В) v С) & (В v С & D) & С = (А & В) v С) & (В v С & D) & C = A & B & C & D =1.

Ответ: в шахматы играют ученики В,С и D, а ученик А не играет.

www.metodichka.net

На вводном уроке, посвящённом основам математической логики, мы познакомились с базовыми понятиями этого раздела математики, и сейчас тема получает закономерное продолжение. Помимо нового теоретического, а точнее даже не теоретического – а общеобразовательного материала нас ожидают практические задания, и поэтому если вы зашли на данную страницу с поисковика и/или плохо ориентируетесь в материале, то, пожалуйста, пройдите по вышеуказанной ссылке и начните с предыдущей статьи. Кроме того, для практики нам потребуется 5 таблиц истинности логических операций, которые я настоятельно рекомендую переписать от руки.

НЕ запомнить, НЕ распечатать, а именно ещё раз осмыслить и собственноручно переписать на бумагу – чтобы они были перед глазами:

– таблица НЕ;
– таблица И;
– таблица ИЛИ;
– импликационная таблица;
– таблица эквиваленции.

Это очень важно. В принципе, их было бы удобно занумеровать «Таблица 1», «Таблица 2» и т.д., но я неоднократно подчёркивал изъян такого подхода – как говорится, в одном источнике таблица окажется первой, а в другом – сто первой. Поэтому будем использовать «натуральные» названия. Продолжаем:

На самом деле с понятием логической формулы вы уже знакомы. Приведу стандартное, но довольно-таки остроумное определение: формулами алгебры высказываний называются:

2) если и – формулы, то формулами также являются выражения вида
.

В частности формулой является любая логическая операция, например логическое умножение . Обратите внимание на второй пункт – он позволяет рекурсивным образом «создать» сколь угодно длинную формулу. Поскольку – формулы, то – тоже формула; так как и – формулы, то – тоже формула и т.д. Любое элементарное высказывание (опять же согласно определению) может входить в формулу неоднократно.

Формулой не является, например, запись – и здесь прослеживается очевидная аналогия с «алгебраическим мусором» , из которого не понятно – нужно ли числа складывать или умножать.

Логическую формулу можно рассматривать, как логическую функцию. Запишем в функциональном виде ту же конъюнкцию:

Элементарные высказывания и в этом случае играют роль аргументов (независимых переменных), которые в классической логике могут принимать 2 значения: истина или ложь. Далее для удобства я буду иногда называть простые высказывания переменными.

Таблица, описывающая логическую формулу (функцию) называется, как уже было озвучено, таблицей истинности. Пожалуйста – знакомая картинка:

Надо сказать, что «выход» здесь получился «в один шаг», но в общем случае логическая формула является более сложной. И в таких «непростых случаях» нужно соблюдать порядок выполнения логических операций:

– в первую очередь выполняется отрицание ;
– во вторую очередь – конъюнкция ;
– затем – дизъюнкция ;
– потом импликация ;
– и, наконец, низший приоритет имеет эквиваленция .

Так, например, запись подразумевает, что сначала нужно осуществить логическое умножение , а затем – логическое сложение: . Прямо как в «обычной» алгебре – «сначала умножаем, а затем складываем».

Порядок действий можно изменить привычным способом – скобками:
– здесь в первую очередь выполняется дизъюнкция и только потом более «сильная» операция.

Наверное, все понимают, но на всякий пожарный: и – это две разные формулы! (как в формальном, так и в содержательном плане)

Составим таблицу истинности для формулы . В данную формулу входят два элементарных высказывания и «на входе» нам нужно перечислить все возможные комбинации единиц и нулей. Чтобы избежать путаницы и разночтений договоримся перечислять комбинации строго в таком порядке (который я, собственно, де-факто использую с самого начала):

В 1-й части урока я обещал выразить импликацию через базовые логические операции, и выполнение обещания не заставило себя ждать! Желающие могут вложить в импликацию содержательный смысл (например, «Если идёт дождь, то на улице сыро») и самостоятельно проанализировать равносильное утверждение .

Сформулируем общее определение: две формулы называются равносильными (тождественными), если они принимают одинаковые значения при любом наборе значений, входящих в эти формулы переменных (элементарных высказываний). Также говорят, что «формулы равносильны, если совпадают их таблицы истинности», но мне не очень нравится эта фраза.

Составить таблицу истинности для формулы и убедиться в справедливости знакомого вам тождества .

1) Так как в формулу входят две переменные, то всего будет 4 возможных набора нулей и единиц. Записываем их в оговорённом выше порядке.

2) Импликации «слабее» конъюнкции, но они располагаются в скобках. Заполняем столбец , при этом удобно использовать следующее прикладное рассуждение: «если из единицы следует ноль, то ставим ноль, во всех других случаях – единицу». Далее заполняем столбец для импликации , и при этом, внимание! – столбцы и следует анализировать «справа налево»!

3) И на завершающем этапе заполняем итоговый столбец . А здесь удобно рассуждать так: «если в столбцах и две единицы, то ставим единицу, во всех остальных случаях – ноль».

И, наконец, сверяемся с таблицей истинности эквиваленции .

С двумя из них мы только что познакомились, но ими дело, понятно, не огранивается. Тождеств довольно много и я перечислю самые важные и самые известные из них:

Знакомые с 1-го класса правила: «От перестановки множителей (слагаемых) произведение (сумма) не меняется». Но при всей кажущейся элементарности этого свойства, справедливо оно далеко не всегда, в частности, некоммутативным является умножение матриц (в общем случае их переставлять нельзя), а векторное произведение векторов – антикоммутативно (перестановка векторов влечёт за собой смену знака).

И, кроме того, здесь я снова хочу подчеркнуть формализм математической логики. Так, например, фразы «Студент сдал экзамен и выпил» и «Студент выпил и сдал экзамен» различны с содержательной точки зрения, но неразличимы с позиций формальной истинности. …Таких студентов знает каждый из нас, и из этических соображений мы не будет озвучивать конкретных имён =)

Обратите внимание, что во 2-м случае будет некорректно говорить о «раскрытии скобок», в известном смысле здесь «фикция» – ведь их можно убрать вообще: , т.к. умножение – это более сильная операция.

И опять же – эти, казалось бы, «банальные» свойства выполняются далеко не во всех алгебраических системах, и, более того, требуют доказательства (о которых мы очень скоро поговорим). К слову, второй дистрибутивный закон несправедлив даже в нашей «обычной» алгебре. И в самом деле:

Прямо какой-то принцип здоровой психики: «я и я – это я», «я или я – это тоже я» =)

…мда, что-то я даже подзавис… так и доктором философии завтра можно проснуться =)

Ну а здесь уже напрашивается пример с русским языком – все прекрасно знают, что две частицы «не» означают «да». А для того, чтобы усилить эмоциональную окраску отрицания нередко используют три «не»:
– даже с крохотным доказательством получилось!

Предположим, что строгий Преподаватель (имя которого вам тоже известно:)) ставит экзамен, если – Студент ответил на 1-й вопрос иСтудент ответил на 2-й вопрос. Тогда высказывание , гласящее о том, что Студент не сдал экзамен, будет равносильно утверждению – Студент не ответил на 1-й вопрос или на 2-й вопрос.

Как уже отмечалось выше, равносильности подлежат доказательству, которое стандартно осуществляется с помощью таблиц истинности. В действительности мы уже доказали равносильности, выражающие импликацию и эквиваленцию, и сейчас настало время закрепить технику решения данной задачи.

Докажем тождество . Поскольку в него входит единственное высказывание , то «на входе» возможно всего лишь два варианта: единица либо ноль. Далее приписываем единичный столбец и применяем к ним правило И:

Да, это доказательство является примитивным (а кто-то скажет, что и «тупым»), но типичный Преподаватель по матлогике вытрясет за него душу. Поэтому даже к таким простым вещам не стОит относиться пренебрежительно.

Теперь убедимся, например, в справедливости закона де Моргана .

Сначала составим таблицу истинности для левой части. Поскольку дизъюнкция находится в скобках, то в первую очередь выполняем именно её, после чего отрицаем столбец :

Любую равносильность можно представить в виде тождественно истинной формулы . Это значит, что ПРИ ЛЮБОМ исходном наборе нулей и единиц «на выходе» получается строго единица. И этому есть очень простое объяснение: так как таблицы истинности и совпадают, то, разумеется, они эквивалентны. Соединим, например, эквиваленцией левую и правую часть только что доказанного тождества де Моргана:

Краткое решение в конце урока. Не ленимся! Постарайтесь не просто составить таблицы истинности, но ещё и чётко сформулировать выводы. Как я недавно отмечал, пренебрежение простыми вещами может обойтись очень и очень дорого!

Формула, которая принимает значение Истина при любом наборе значений входящих в неё переменных, называется тождественно истинной формулой или законом логики.

В силу обоснованного ранее перехода от равносильности к тождественно истинной формуле , все перечисленные выше тождества представляют собой законы логики.

Формула, которая принимает значение Ложь при любом наборе значений входящих в неё переменных, называется тождественно ложной формулой или противоречием.

Фирменный пример противоречия от древних греков:
– никакое высказывание не может быть истинным и ложным одновременно.

Однако и любое противоречие – это тоже закон логики, в частности:

Нельзя объять столь обширную тему в одной-единственной статье, и поэтому я ограничусь ещё лишь несколькими законами:

– в классической логике любое высказывание истинно или ложно и третьего не дано. «Быть или не быть» – вот в чём вопрос.

Самостоятельно составьте табличку истинности и убедитесь в том, что это тождественно истинная формула.

Этот закон активно муссировался, когда мы обсуждали суть необходимого условия, вспоминаем: «Если во время дождя на улице сыро, то из этого следует, что если на улице сухо, то дождя точно не было».

Также из данного закона следует, что если справедливой является прямая теорема , то обязательно истинным будет и утверждение , которое иногда называют противоположной теоремой.

Если истинна обратная теорема , то в силу закона контрапозиции , справедлива и теорема, противоположная обратной:

И снова вернёмся к нашим содержательным примерам: для высказываний – число делится на 4, – число делится на 2 справедливы прямая и противоположная теоремы, но ложны обратная и противоположная обратной теоремы. Для «взрослой» же формулировки теоремы Пифагора истинны все 4 «направления».

Тоже классика жанра: «Все дубы – деревья, все деревья – растения, следовательно, все дубы – растения».

Ну и здесь опять хочется отметить формализм математической логики: если наш строгий Преподаватель думает, что некий Студент – есть дуб, то с формальной точки зрения данный Студент, безусловно, растение =) …хотя, если задуматься, то может быть и с неформальной тоже =)

Давайте на этой веселой ноте проведём доказательство. В данную формулу входят уже элементарных высказывания , а значит, всего будет: различных комбинаций нулей и единиц (см. три левых столбца таблицы). Заодно, кстати, записал вам общую формулу; с точки зрения комбинаторики, здесь размещения с повторениями.

Составим таблицу истинности для формулы . В соответствии с приоритетом логических операций, придерживаемся следующего алгоритма:

1) выполняем импликации и . Вообще говоря, можно сразу выполнить и 3-ю импликацию, но с ней удобнее (и допустимо!) разобраться чуть позже;

4) и на завершающем шаге применяем импликацию к столбцам и .

Не стесняйтесь контролировать процесс указательным и средним пальцем :))

Выяснить, будет ли являться законом логики следующая формула:

Краткое решение в конце урока. Да, и чуть не забыл – давайте условимся перечислять исходные наборы нулей и единиц в точно таком же порядке, что и при доказательстве закона силлогизма. Строки конечно, можно и переставить, но это сильно затруднит сверку с моим решением.

Помимо своего «логического» назначения, равносильности широко используются для преобразования и упрощения формул. Грубо говоря, одну часть тождества можно менять на другую. Так, например, если в логической формуле вам встретился фрагмент , то по закону идемпотентности вместо него можно (и нужно) записать просто . Если вы видите , то по закону поглощения упрощайте запись до . И так далее.

Кроме того, есть ещё одна важная вещь: тождества справедливы не только для элементарных высказываний, но и для произвольных формул. Так, например:

Преобразуем, например, сложную импликацию (1-е тождество):

Далее применим к скобке «сложный» закон де Моргана, при этом, в силу приоритета операций, именно закон , где :

Скобки можно убрать, т.к. внутри находится более «сильная» конъюнкция:

Далее напрашивается использовать «простой» закон де Моргана и т.д.

Ну, а с коммутативностью вообще всё просто – даже обозначать ничего не нужно… что-то запал мне в душу закон силлогизма:))

Таким образом, закон можно переписать и в более затейливом виде:

Проговорите вслух логическую цепочку «с дубом, деревом, растением», и вы поймёте, что от перестановки импликаций содержательный смысл закона нисколько не изменился. Разве что формулировка стала оригинальнее.

С чего начать? Прежде всего, разобраться с порядком действий: здесь отрицание применено к целой скобке, которая «скреплена» с высказыванием «чуть более слабой» конъюнкцией. По существу, перед нами логическое произведение двух множителей: . Из двух оставшихся операций низшим приоритетом обладает импликация, и поэтому вся формула имеет следующую структуру: .

Как правило, на первом шаге (шагах) избавляются от эквиваленции и импликации (если они есть) и сводят формулу к трём основным логическим операциям. Что тут скажешь…. Логично.

Затем обычно следуют «разборки» со скобками. Сначала всё решение, затем комментарии. Чтобы не получилось «масло масляное», буду использовать значки «обычного» равенства:

(2) К внешним скобкам применяем закон де Моргана , где .

(3) К внутренним скобкам применяем закон двойного отрицания . Внешние скобки можно убрать, т.к. за её пределами находятся равные по силе операции.

(4) В силу коммутативности дизъюнкции меняем местами и . Оставшиеся скобки тоже убираем по озвученной выше причине.

(5) В силу коммутативности дизъюнкции меняем местами и , а также и .

Вот оно как…, оказалось, что наша формула – тожественно истинна:

Желающие могут составить таблицу истинности и убедиться в справедливости данного факта.

Наверное, все обратили внимание на формализм последних преобразований, но решать лучше именно так! В противном случае с немалой вероятностью гарантированы проблемы с зачётом задания (впрочем, тут от преподавателя зависит). Математическая логика как наука – формальна, и строго говоря, осуществлять «перескоки» наподобие нежелательно.

Выразить эквиваленцию через отрицание, конъюнкцию, дизъюнкцию и раскрыть скобки

Аккуратно проводим преобразования в соответствии с равносильностями. После этого будет не лишним вернуться к параграфу об эквиваленции и найти там фразу, которая соответствует полученному результату 😉

И в заключение урока небольшое напутствие для читателей, которым предстоит погружение в матлогику. Данный предмет у меня был на 1-м курсе института, и в ходе изучения исчисления высказываний, предикатов и прочих «машин тьюринга» я допускал принципиальную ошибку – а именно, пытался «подогнать» под математическую логику неформальную основу. И окончательное понимание всей стройности формальной теории, важности «очевидных» доказательств и т.д. пришло далеко не сразу. Скучно? Нет! – на самом деле очень красиво…. То же самое, кстати, относится к высшей алгебре и некоторым другим предметам.

…но что бы вы прочитали эти строки, я всё-таки преподнёс материал, скорее в «школьном» стиле – с многочисленными содержательными примерами!

Задание 1 Решение: составим таблицу истинности для формулы :

(подробные инструкции по заполнению таблицы находятся после условия задачи)
Полученный результат совпадает с эквиваленцией высказываний и , таким образом:

Задание 2 Решение: доказательства проведём с помощью таблиц истинности:

а) Дважды записываем все варианты истины и лжи высказывания и применяем к столбцам операцию ИЛИ:

Результат совпадает с . Тождество доказано

б) составим таблицу истинности для левой части тождества
. Сначала к столбцам и применяем операцию ИЛИ, затем к столбцам и – операцию И:

В результате истинность формулы совпала с истинностью высказывания , таким образом, тождество доказано.

Задание 3 Решение: составим таблицу истинности:

Вывод: данная формула не является тождественно истинной (законом логики)

(1) Используем тождество .
(2) Дважды применяем тождество .
(3) Используем дистрибутивный закон , в данном случае:
(квадратные скобки можно было не ставить – они не меняют порядок действий, но помогают лучше видеть ситуацию).
(4) В квадратных скобках используем коммутативность конъюнкции.
(5) Дважды используем тот же самый дистрибутивный закон.
(6) Во второй слева скобке используем коммутативность конъюнкции.
(7) Согласно закону противоречия: .
(8) К формуле дважды применяем тожество .
(9) А это уже для красоты :)) Скобки, кстати, можно было убрать намного раньше (я их не опускал с целью улучшить восприятие преобразований).

Примечание: на 3-м шаге можно было раскрыть скобки по «правилу умножения многочленов» и сразу перейти к шагу № 7, но, строго говоря, это действие ещё нужно обосновать. А вдруг в алгебре логики это правило несправедливо?

(1) Для левой скобки используем закон де Моргана. Во второй скобке – «раскладываем» импликацию.
(2) В первой скобке дважды применяем закон двойного отрицания. В силу коммутативности конъюнкции меняем местам и .
(3) К «иксу» и правой скобке применяем дистрибутивный закон.
(4) Согласно закону противоречия высказывания, средняя скобка тождественно ложна.
(5) К левой скобке применяем тождество . Убираем все скобки, поскольку это не меняет порядок действий.
(6) Используем коммутативность умножения и закон поглощения .

www.mathprofi.ru

3. Законы логики и правила преобразования логических выражений

  • Закон двойного отрицания (двойное отрицание исключает отрицание):

    Результат операции над высказываниями не зависит от того, в каком порядке берутся эти высказывания.

    При одинаковых знаках скобки можно ставить произвольно или вообще опускать.

    Закон определяет правило выноса общего высказывания за скобку.

  • Закон идемпотентности (от латинских слов idem — тот же самый и potens — сильный; дословно — равносильный):

    Невозможно, чтобы противоречащие высказывания были одновременно истинными.

    Из двух противоречащих высказываний об одном и том же предмете одно всегда истинно, а второе — ложно, третьего не дано.

    Знание законов логики позволяет проверять правильность рассуждений и доказательств. Основываясь на законах, можно выполнять упрощение сложных логических выражений. Такой процесс замены сложной логической функции более простой, но равносильной ей, называется минимизацией функции.

    Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), другие — основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).

    Нарушения законов логики приводят к логическим ошибкам и вытекающим из них противоречиям.

  • Аналогично предыдущему пункту вынесем за скобки высказывание А.
    A U B & A U B & C = A & (1 U B) U B & C = A U B & C.
  • Всякую формулу можно преобразовать так, что в ней не будет отрицаний сложных высказываний — все отрицания будут применяться только к простым высказываниям.

    Пример 2. Упростить выражения так, чтобы в полученных формулах не содержалось отрицания сложных высказываний.

    umk.portal.kemsu.ru