Законы небесной механики кеплера

Небесная механика. Законы Кеплера

Еще в далекой древности люди заметили, что в движении планет наблюдаются закономерности. Движение подчиняется неизвестным в то время законам.

Иоган Кеплер родился в 1571 году, всю жизнь занимался астрономией и математикой.

Учителем Кеплера был Тихо Браге, датский астроном. Браге выяснил, что движение Марса не всегда подчиняется известным на то время законам, но причину явления объяснить не смог. Кеплер обнаружил ошибку у своего учителя, который, как и астрономы древности, считал, что орбиты движения планет представляют окружность.

Десятилетние наблюдения Кеплера позволили ему установить, что орбита движения Марса не круговая, а эллиптическая. Так был открыт закон, известный нам как Первый закон Кеплера.

Продолжая исследования, Кеплер установил, что скорость движения планет непостоянная. Она увеличивается при приближению к Солнцу, а при удалении от него уменьшается. Это Второй закон Кеплера.

Как был открыт Третий закон Кеплера, история умалчивает. Видимо, гениальность ученого помогла сравнить именно отношение квадратов сидерический периодов и кубы больших полуосей их орбит а не какие-либо другие параметры. Впрочем, Кеплер работал в библиотеке, в которой хранились накопленные веками материалы его предшественников.

Законы, отрытые Кеплером, помогли во много раз повысить точность описания движения планет, рассчитать их появление.

На основе законов Кеплера сформировался раздел астрономии Небесная механика. Это раздел, изучающий движение небесных тел.

Теория Кеплера получила блестящее практическое подтверждение. Благодаря ей были сначала математически, а затем и практически открыты незамеченные ранее Нептун и Плутон (1930 г.).

pednews.ru

Удивительно много успел сделать в жизни Иоганн Кеплер, хотя по печальному жребию судьбы он с детства страдал различными болезнями и в том числе множественностью зрения, из-за чего во время наблюдений неба в его глазах возникала, например, не одна Луна, а несколько.

Какой силой духа и воли надо обладать, чтобы при этом продолжать напряженно работать. Огромный вклад внес Кеплер не только в астрономию, но и в оптику. Занимался он самыми разными научными проблемами, даже изучал устройство человеческого глаза…

После смерти Кеплера в 1630 году осталось одно изношенное платье, две рубашки, несколько медных монет и… 57 вычислительных таблиц, 27 напечатанных научных трудов, огромное рукописное наследие, собранное позже в 22 книгах, и три закона движения планет. Три замечательных закона, точное соответствие которых небесной механике подтвердили тщательные и многочисленные измерения, выполненные многими последующими поколениями ученых.

Восхищенный сторонник системы Коперника, Кеплер тем не менее усмотрел в ней серьезный недостаток: обращение планет вокруг Солнца Коперник считал состоящим из нескольких движений по кругу. Внимательно анализируя наблюдения Тихо Браге, Кеплер понял, что в действительности орбиты планет представляют собой эллипсы, а не окружности, причем Солнце обязательно находится в одном из фокусов эллипса. Так формулируется первый закон Кеплера. Просто и убедительно!

Великий труженик науки, разносторонний ученый Иоганн Кеплер.

Если Солнце и одну из планет соединить воображаемой прямой-радиусом, то площади эллипса, отчеркиваемые радиусом за одинаковые промежутки времени, будут равны между собой. Это второй закон Кеплера.

Третий закон может быть выражен следующими словами: время обращения каждой планеты вокруг Солнца, возведенное в квадрат, пропорционально размеру большой полуоси ее эллиптической орбиты, взятой в кубе.

Планеты и Солнце оказались связанными неразрывно. Законы Кеплера позволили точнее предсказывать движение небесных светил, но на вопрос, почему это движение происходит именно так, а не иначе, предстояло ответить Исааку Ньютону…

Кеплер, конечно, неустанно размышлял и над природой сил, объединяющих в единую величественную систему огромные массы вещества, заключенные в планетах и Солнце. Он ввел в физику, и в частности в механику, много определений, которыми мы пользуемся до сих пор. Сопротивление движению тел, находящихся в покое, Кеплер обозначил словом «инерция», а силу притяжения между массивными телами — термином «гравитация».

«Гравитацию я определяю как силу,— писал Кеплер,— подобную магнетизму — взаимному притяжению. Сила притяжения тем больше, чем тела ближе одно к другому…»

Еще до открытий Ньютона Кеплер объяснил причины океанских приливов и отливов тем, что «тела Солнца и Луны притягивают воды океана с помощью некоторых сил, подобных магнетизму».

Разнообразны были таланты Кеплера. И проявлялись они часто в областях, далеких от физики и астрономии. В течение шести лет, например, ему приходилось быть… адвокатом собственной матери, которую обвиняли в колдовстве.

От времен созерцательной астрономии остались образные названия созвездий, напоминавших наблюдателям различных животных, изображенных на этой старинной карте XVII века из атласа Яна Гевелия.

В средневековой Европе полыхали костры инквизиции. На родине Кеплера, в маленьком немецком городе Вейле, в котором едва насчитывалось в те времена несколько сот жителей, в период с 1615 по 1629 год было сожжено 38 «колдуний»!

А против матери Кеплера было выставлено множество тяжелых, по тогдашним понятиям, обвинений. Одно из самых страшных ее преступлений — слова, сказанные соседке: «Нет ни рая, ни ада. От человека остается то же, что и от животных».

Но недаром судьи записали в одном из протоколов: «Арестованную, к сожалению, защищает ее сын господин Кеплер, математик». Кеплер сумел добиться оправдания своей несправедливо осужденной, измученной матери.

Ему лишь никогда не удавалось одно из дел, на которое уходило много сил — вовремя и полностью получать денежное содержание, положенное придворному астроному и астрологу. После смерти Кеплера его жене и четырем малолетним детям причиталось почти 13 тысяч гульденов так и не выплаченного жалования…

www.thingshistory.com

Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Закон открыт Ньютоном также в XVII веке (понятно, что на основе законов Кеплера). Второй закон Кеплера эквивалентен закону сохранения момента импульса. В отличие от двух первых, третий закон Кеплера применим только к эллиптическим орбитам. Немецкий астроном И. Кеплер в начале XVII века на основе системы Коперника сформулировал три эмпирических закона движения планет Солнечной системы.

В рамках классической механики выводятся из решения задачи двух тел предельным переходом > 0, где , — массы планеты и Солнца соответственно. Мы получили уравнение конического сечения с эксцентриситетомe и началом системы координат в одном из фокусов. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.

3.1. Движение в гравитационном поле

Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Другая формулировка этого закона: секториальная скорость планеты постоянна. Современная формулировка первого закона дополнена так: в невозмущенном движении орбита движущегося тела есть кривая второго порядка – эллипс, парабола или гипербола.

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T2

R3, где Т – период обращения, R – радиус орбиты. В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной. При E = E1 rmax. В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. Установлены Иоганном Кеплером в начале XVII века как обобщение данных наблюдений Тихо Браге. Причем особенно внимательно Кеплер изучал движение Марса. Рассмотрим законы подробнее.

При с=0 и е=0 эллипс превращается в окуржность. Этот закон, равно как и первые два, применим не только к движению планет, но и к движению как их естественных, так и искуственных спутников. Кеплера не дана, так как в этом не было необходимости. Кеплера сформулирован Ньютоном так: квадраты сидерических периодов планет, умноженные на сумму масс Солнца и планеты, относятся как кубы больших полуосей орбит планет.

17 в. И. Кеплером (1571-1630) на основе многолетних наблюдений Т. Браге (1546-1601). Закон площадей.) 3. Квадраты периодов любых двух планет соотносятся как кубы их средних расстояний от Солнца. Наконец, он предположил, что орбита Марса эллиптическая, и увидел, что эта кривая хорошо описывает наблюдения, если Солнце поместить в один из фокусов эллипса. Затем Кеплер предположил (хотя и не мог точно доказать этого), что все планеты движутся по эллипсам, в фокусе которых находится Солнце.

КЕПЛЕРОВСКИЙ ЗАКОН ПЛОЩАДЕЙ. 1 й закон: каждая планета движется по эллиптич. Когда камень падает на Землю, он подчиняется закону всемирного тяготения. Эта сила прилагается к одному из взаимодействующих тел и направлена в сторону другого. К такому заключению, в частности, пришел И. Ньютон в своем мысленном бросании камней с высокой горы.Итак, Солнце искривляет движение планет, не давая им разлететься во все стороны.

Кеплер на основе результатов кропотливых и многолетних наблюдений Тихо Браге за планетой Марс смог определить форму его орбиты. Действие на Луну Земли и Солнца делают совершенно непригодными для расчетов ее орбиты законы Кеплера.

Форма эллипса и степень его сходства с окружностью характеризуется отношением , где — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), — большая полуось. Таким образом можно утверждать, что , а следовательно и пропорциональная ей скорость заметания площади — константа. Солнца, а и — длины больших полуосей их орбит. Утверждение справедливо также для спутников.

Вычислим площадь эллипса, по которому движется планета. При этом взаимодействие между телами M1 и M2 не учитывается. Различие будет только в линейных размерах орбит (если тела разной массы). В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами.

Глава 3. Основы небесной механики

Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства. С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника.

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым. Круговая и эллиптическая орбиты.

Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, уже говорилось, что сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу. Потенциальная энергия тела массы m, находящегося на расстоянии r от неподвижного тела массы M, равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

В пределе при ?ri > 0 эта сумма переходит в интеграл. Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6). Если скорость космического корабля равна ?1 = 7.9·103 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей.

Таким образом, первый закон Кеплера прямо следует из закона всемирного тяготения Ньютона и второго закона Ньютона. 3. Наконец, Кеплер отметился еще и третьим законом планетных движений. Солнца, а и — массы планет. Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удаленная точка орбиты.

labudnu.ru

Ii основы небесной механики урок № 10 законы движения небесных тел 1 развитие представлений о солнечной системе 2 петлеобразное движение планет

УРОК № 10. ЗАКОНЫ ДВИЖЕНИЯ НЕБЕСНЫХ ТЕЛ.

1. Развитие представлений о Солнечной системе.

2. Петлеобразное движение планет.

3. Иоганн Кеплер и Исаак Ньютон.

4. Законы Кеплера.

5. Закон всемирного тяготения Ньютона.

6. Конические сечения.

7. Ревизия законов Кеплера.

8. Определение масс небесных тел.

1. Развитие представлений о Солнечной системе.

Первая научная геоцентрическая система мира начала формироваться в трудах Аристотеля и других ученых древней Греции. Свое завершение она получила в работах древнегреческого астронома Птолемея. Согласно этой системе в центре мира расположена Земля, откуда и название геоцентрическая. Вселенная ограничена хрустальной сферой, на которой расположены звезды. Между Землей и сферой движутся планеты, Солнце и Луна. Древние считали, что равномерное круговое движение – это идеальное движение, и что небесные тела именно так и движутся. Но наблюдения показывали, что Солнце и Луна движутся неравномерно и для устранения этого очевидного противоречия, пришлось предположить, что они движутся по окружностям, центры которых не совпадают ни с центром Земли, ни между собой. Еще более сложное петлеобразное движение планет пришлось представить как сумму двух круговых равномерных движений. Такая система позволяла с достаточной для наблюдений точностью рассчитывать взаимное расположение планет на будущее. Петлеобразное движение планет еще долгое время оставалось загадкой и нашло свое объяснение только в учении великого польского астронома Николая Коперника

В 1543 году вышла в свет его книга «О вращении небесных сфер». В ней была изложена новая гелиоцентрическая система мира. Согласно этой системе в центре мира находится Солнце. Планеты, в том числе и Земля, обращаются вокруг Солнца по круговым орбитам, а Луна вокруг Земли и одновременно с ней вокруг Солнца. Точность в определение положений планет возросла правда ненамного, но именно система Коперника позволила просто объяснить петлеобразное движение планет. Учение Коперника нанесло сокрушительный удар по геоцентрической системе мира. Оно далеко вышло за рамки астрономии дало мощный толчок развитию всего естествознания.

2. Петлеобразное движение планет.

Невооруженным глазом мы можем наблюдать пять планет- Меркурий, Венеру, Марс, Юпитер и Сатурн. Планеты относятся к тем светилам, которые не только участвуют в суточном вращении небесной сферы, но еще и смещаются на фоне зодиакальных созвездий, так как они вращаются вокруг Солнца. Если проследить за ежегодным перемещением какой-нибудь планеты, каждую неделю отмечая его положение на звездной карте, то может выявиться главная особенность видимого движения планеты: планета описывает на фоне звездного неба петлю, которая объясняется тем, что мы наблюдаем движение планет не с неподвижной Земли, а с Земли, вращающейся вокруг Солнца.

3. Иоганн Кеплер и Исаак Ньютон.

Два величайших ученых намного обогнавшие свое время, они создали науку, которая называется небесной механикой, то есть открыли законы движения небесных тел под действием сил тяготения, и даже если бы этим их достижения ограничились, они все равно бы вошли в пантеон великих мира сего. Так случилось, что они не пересеклись во времени. Только через тринадцать лет после смерти Кеплера родился Ньютон. Оба они являлись сторонниками гелиоцентрической системы Коперника. Много лет изучая движение Марса, Кеплер экспериментально открывает три закона движения планет, за пятьдесят с лишним лет до открытия Ньютоном закона всемирного тяготения. Еще не понимая, почему планеты движутся так, а не иначе. Это был каторжный труд и гениальное предвидение. Зато Ньютон именно законами Кеплера проверял свой закон тяготения. Все три закона Кеплера являются следствиями закона тяготения. И открыл его Ньютон в 23 года. В это время 1664 – 1667 годы в Лондоне свирепствовала чума. Тринити колледж, в котором преподавал Ньютон, был распущен на неопределенный срок, дабы не усугубить эпидемию. Ньютон возвращается к себе на родину и за два года совершает переворот в науке, сделав три важнейших открытия: дифференциальное и интегральное исчисление, объяснение природы света и закон всемирного тяготения. Исаак Ньютон был торжественно похоронен в Вестминстерском аббатстве. Над его могилой высится памятник с бюстом и эпитафией «Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики в руке движение планет, пути комет и приливы океанов… Пусть смертные радуются, что существует такое украшение рода человеческого».

4. Законы Кеплера.

Первый закон Кеплера. Все планеты Солнечной системы вращаются вокруг Солнца по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

Второй закон Кеплера Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади: скорость движения планет максимальна в перигелии и минимальна в афелии.

Третий закон Кеплера. Квадраты периодов обращений планет вокруг Солнца соотносятся между собой, как кубы их средних расстояний от Солнца:

Именно для этого случая три закона движения планет относительно Солнца были получены эмпирически Иоганном Кеплером. Как же он это сделал? Кеплеру были известны: координаты Марса на небесной сфере с точностью до 2” по данным наблюдений его учителя Тихо Браге; относительные расстояния планет от Солнца; синодические и сидерические периоды обращения планет. Далее он рассуждал примерно так.

И звестно положение Марса во время противостояния (см. рис.). В треугольнике АВС буква А обозначает положение Марса, В — Земли, С – Солнца. Через промежуток времени, равный сидерическому периоду обращения Марса (687 дней) планета вернется в точку А, а Земля за это время переместится в точку В’. Поскольку угловые скорости движения Земли в течение года известны (они равны угловым скоростям видимого движения Солнца по эклиптике), можно вычислить угол АСВ’. Определив координаты Марса и Солнца в момент прохождения Землей через точку В’, мы можем, зная в треугольнике 2 угла, по теореме синусов рассчитать отношение стороны СВ’ к АС. Еще через один оборот Марса Земля придет в положение В» и можно будет определить отношение СВ» к тому же отрезку АС и т.д. Таким образом, точка за точкой можно получить представление об истинной форме орбиты Земли, установить, что она является эллипсом, в фокусе которого находится Солнце. Можно определить что, если время движения по дуге M3M4 = времени движения по дуге M1M2, то Пл. SM3M4 = Пл. SM1M2.

F1 и F2–фокусы эллипса, c-фокусное расстояние, а- большая полуось эллипса и среднее расстояние от планеты до Солнца.

5. Закон всемирного тяготения Ньютона.

Исаак Ньютон смог объяснить движение тел в космическом пространстве с помощью закона всемирного тяготения. Он пришел к своей теории в результате многолетних исследований движения Луны и планет. Но упрощенный вывод закона всемирного тяготения можно сделать и из третьего закона Кеплера.

Пусть планеты движутся по круговым орбитам, их центростремительные ускорения равны: , где Т – период обращения планеты вокруг Солнца, R — радиус орбиты планеты. Из III закона Кеплера или . Следовательно, ускорение любой планеты независимо от ее массы обратно пропорционально квадрату радиуса ее орбиты: .

Согласно II закону Ньютона, сила F, сообщающая планете это ускорение, равна: (1) т.е. прямо пропорциональна массе планеты и обратно пропорциональна квадрату расстояния от нее до Солнца.

Согласно III закону Ньютона, сила F’ , действующая на планету со стороны Солнца, равна ей по модулю, противоположна по направлению и равна: , где М – масса Солнца. Поскольку F = F’ , = . Обозначим , где G = 6,67•10 –11 Н•м 2 /кг 2 – гравитационная постоянная. Тогда и выражение (1) можно записать в виде известной нам формулы закона Всемирного тяготения: . Сила тяготения между Солнцем и планетой пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Этот закон справедлив для любых сферически симметричных тел, а приближенно он выполняется для любых тел, если расстояние между ними велико по сравнению с их размерами. Ускорение, которое, согласно второму закону Ньютона, испытывает тело m, находящееся на расстоянии r от тела M, равно: частности, ускорение свободного падения в поле Земли равно, , где -масса Земли, – расстояние до ее центра. Вблизи поверхности Земли ускорение свободного падения равно g = 9,8 м/с 2 . Сплюснутость Земли и ее вращение приводят к отличию силы тяжести на экваторе и возле полюсов: ускорение свободного падения в точке наблюдения может приближенно высчитываться по формуле g = 9,78 • (1 + 0,0053 sin ?), где ? – широта этой точки.

Н еобычно ведет себя сила тяжести внутри Земли. Если Землю принять за однородный шар, сила тяжести растет пропорционально расстоянию до центра шара r.

6. Конические сечения.

Конические сечения образуются при пересечении прямого кругового конуса с плоскостью. К коническим сечениям относятся кривые второго порядка: эллипс, парабола и гипербола. Все они является геометрическим местом точек, расстояния от которых до заданных точек (фокусов) или до заданной прямой (директрисы) есть величина постоянная. Например, эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух заданных точек (фокусов F1 и F2) есть величина постоянная и равная длине большой оси: F1M+F2M=2а=const. Степень вытянутости эллипса характеризуется его эксцентриситетом е. Эксцентриситет е =с/а. При совпадении фокусов с центром е = 0, и эллипс превращается в окружность. Большая полуось а является средним расстоянием от фокуса до эллипса. Ближайшая к фокусу точка эллипса называется перицентром, самая удаленная – апоцентром. Расстояние от фокуса до перицентра равно ПF1 = a (1 – e), до апоцентра – F1A = a (1 + e).

7. Ревизия законов Кеплера.

Итак, Кеплер открыл свои законы эмпирическим путем. Ньютон же вывел законы Кеплера из закона всемирного тяготения. В результате этого претерпели изменения первый и третий законы. Первый закон Кеплера был обобщен и его современная формулировка звучит так: Траектории движения небесных тел в центральном поле тяготения представляют собой конические сечения: эллипс, окружность, параболу или гиперболу, в одном из фокусов которой находится центр масс системы. Форма траектории определяется величиной полной энергии движущегося тела, которая складывается из кинетической энергии К тела массы m, движущегося со скоростью v, и потенциальной энергии U тела, находящегося в гравитационном поле на расстоянии r от тела с массой М. При этом действует закон сохранения полной энергии тела. Е=К + U = const; К = mv 2 /2, U=-GMm/r.

Закон сохранения энергии можно переписать в виде: (2).

Константа h называется постоянной энергии. Она прямо пропорциональна полной механической энергии тела E и зависит только от начального радиус-вектора r0 и начальной скорости v0. При h 0 кинетическая энергия тела достаточно велика, и на бесконечном расстоянии от притягивающего центра тело будет иметь ненулевую скорость удаления от него – это движение по гиперболе. Таким образом, можно сказать, что тело движется относительно притягивающего центра только по орбитам, являющимися коническими сечениями. Как следует из формулы (2), приближение тела к притягивающему центру всегда должно сопровождаться увеличением орбитальной скорости тела, а удаление – уменьшением в соответствии со вторым законом Кеплера. Второй закон Кеплера не подвергся ревизии, а вот третий был уточнен, и звучит он так: отношение куба большой полуоси. планетной орбиты к квадрату периода обращения планеты вокруг Солнца равно сумме масс Солнца и планеты, где (3)M? и m массы Солнца и планеты, соответственно; а и Т – большая полуось и период обращения планеты. В отличие от двух первых, третий закон Кеплера применим только к эллиптическим орбитам.

В обобщенном виде этот закон обычно формулируется (4) так: Произведение сумм масс небесных тел и их спутников с квадратами их сидерических периодов обращения относятся как кубы больших полуосей их орбит, где М1 и М2 — массы небесных тел, m1 и m2 — соответственно массы их спутников, а1 и а2 — большие полуоси их орбит, Т1 и Т2 — сидерические периоды обращения. Необходимо понять, что закон Кеплера связывает характеристики движения компонентов любых произвольных и независимых космические систем. В эту формулу могут входить одновременно Марс со спутником, и Земля с Луной, или Солнце с Юпитером.

Если мы применим этот закон к планетам Солнечной системы и пренебрежем массами планет М1 и М2 в сравнении с массой Солнца М0 (т.е. M1 -6 М0. Ну а абсолютную массу Солнца вычислить совсем просто. Воспользовавшись непосредственно формулой (3), для пары Солнце-Земля, отбросив при этом массу Земли в силу ее малости в сравнении с массой Солнца, получим для М0=2·10 30 кг.

Третий закон Кеплера позволяет вычислить не только массу Солнца, но и массы других звезд. Правда, это можно сделать только для двойных систем, массу одиночных звезд определить таким образом невозможно. Измеряя взаимное положение двойных звезд в течение длительного времени, часто удается определить период их обращения Т и выяснить форму их орбит. Если известно расстояние R до двойной звезды и максимальный ?max и минимальный ?min угловые размеры орбиты, то можно определить большую полуось орбиты а=R(?max+ ?min)/2, далее воспользовавшись уравнением (3) мы можем вычислить суммарную массу двойной звезды. Если при этом на основании наблюдений определить расстояние от звезд до центра масс х1 и х2, а точнее отношение х12,которое сохраняется постоянным, то появляется второе уравнение x1/x2=m2/m1 , дающее возможность определить массу каждой звезды в отдельности.

Д.З. § 8,9, 10. Задачи 7,8 стр.47.

1. Как называется ближайшая к Солнцу точка орбиты планеты?:

2. Как называется самая удаленная точка орбиты Луны?

3. Как меняется значение скорости движения кометы при ее перемещении от перигелия к афелию?

5. Как зависит синодический период внешних планет от расстояния до Солнца?

6. Почему космодромы стараются строить ближе к экватору?

7. Как изменяется гравитационное поле внутри Земли?

8. Сформулируйте законы Кеплера.

9. Чему равно средний радиус орбиты планеты?

textarchive.ru

Законы небесной механики кеплера

Три закона движения планет относительно Солнца были выведены эмпирически немецким астрономом Иоганном Кеплером в начале XVII века. Это стало возможным благодаря многолетним наблюдениям датского астронома Тихо Браге.

Первый закон Кеплера . Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера ( закон равных площадей ). Радиус-вектор планеты за равные промежутки времени описывает равновеликие площади. Другая формулировка этого закона: секториальная скорость планеты постоянна.

Третий закон Кеплера . Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

Современная формулировка первого закона дополнена так: в невозмущенном движении орбита движущегося тела есть кривая второго порядка – эллипс, парабола или гипербола.

В отличие от двух первых, третий закон Кеплера применим только к эллиптическим орбитам.

Скорость движения планеты в перигелии

Кеплер открыл свои законы эмпирическим путем. Ньютон вывел законы Кеплера из закона всемирного тяготения. Для определения масс небесных тел важное значение имеет обобщение Ньютоном третьего закона Кеплера на любые системы обращающихся тел.

В обобщенном виде этот закон обычно формулируется так: квадраты периодов T 1 и T 2 обращения двух тел вокруг Солнца, помноженные на сумму масс каждого тела (соответственно M 1 и M 2) и Солнца ( M ) , относятся как кубы больших полуосей a 1 и a 2 их орбит:

При этом взаимодействие между телами M 1 и M 2 не учитывается. Если пренебречь массами этих тел в сравнении с массой Солнца (т.е. M 1

college.ru