Правил марковникова

Правило Марковникова В. В. Суть и примеры

В химических реакциях по месту разрушения двойной связи в алкенах и тройной в алкинах могут присоединяться различные частицы. Каким закономерностям подчиняется этот процесс? Исследовал поведение несимметричных гомологов этилена при гидрогалогенировании и гидратации русский ученый В. В. Марковников. Он установил, что механизм протекания реакции зависит от того, с каким числом водорода связан углерод при двойной связи. Гипотеза, которую выдвинул ученый, подтвердилась после открытий в области строения атома. Правило Марковникова заложило основы создания научной теории, имеющей практическое применение. Она позволяет более рационально организовать производство полимеров, смазочных масел, спиртов.

Русский ученый в своей деятельности много времени уделял изучению механизма присоединения несимметричных реагентов к непредельным углеводородам. В своей статье, изданной на немецком языке в 1870 году, В. В. Марковников обратил внимание научного сообщества на избирательность взаимодействия галогеноводородов с атомами углерода, находящимися при двойной связи в несимметричных алкенах. Русский исследователь привел данные, которые он получил опытным путем в своей лаборатории. Марковников писал, что галоген обязательно присоединяется к тому атому углерода, который содержит наименьшее количество атомов водорода. Большую популярность работы ученого приобрели в начале XX века. Предложенная им гипотеза механизма взаимодействия получила название «правило Марковникова».

Жизнь и деятельность ученого-органика

Владимир Васильевич Марковников появился на свет 25 (13 по ст. стилю) декабря 1837 года. Учился в университете Казани, позже преподавал в этом учебном заведении и в Московском университете. Марковников изучал поведение ненасыщенных углеводородов при взаимодействии с галогеноводородами с 1864 года. Вплоть до 1899 года ученые других стран не придавали значения выводам русского химика. Марковников, кроме правила, названого в его честь, совершил ряд других открытий:

  • получил циклобутандикарбоновую кислоту;
  • исследовал нефть Кавказа и открыл в ней органические вещества особого состава — нафтены;
  • установил разницу в температурах плавления соединений с разветвленными и прямолинейными цепочками;
  • доказал изомерию жирных кислот.

Труды ученого в значительной мере содействовали развитию отечественной химической науки и промышленности.

Суть гипотезы, выдвинутой Марковниковым

Ученый много лет посвятил изучению реакций присоединения реагентов к непредельным углеводородам с одной двойной связью (алкенам). Он заметил, что если в составе соединений присутствует водород, то он направляется к тому углеродному атому, который содержит больше частиц этого вида. Анион присоединяется к соседнему углероду. Это и есть правило Марковникова, его суть. Ученый гениально предсказал поведение частиц, о строении которых в то время еще имелись не очень четкие представления. В соответствии с правилом, к этиленовым углеводородам присоединяются сложные вещества, имеющие состав НХ, где Х:

  • галоген;
  • гидроксил;
  • кислотный остаток серной кислоты;
  • другие частицы.

Современное звучание правила Марковникова отличается от формулировок ученого: атом водорода из молекулы НХ, присоединяемой алкеном, направляется к тому углероду при двойной связи, который уже содержит больше водорода, а частица Х направляется к наименее гидрогенизированному атому.

Механизм присоединения электрофильных частиц

Рассмотрим виды химических превращений, в которых применяется правило Марковникова. Примеры:

  1. Реакция присоединения к пропену хлороводорода. В ходе взаимодействия между частицами происходит разрушение двойной связи. Анион хлора направляется к менее гидрогенизированному углероду, находившемуся при двойной связи. Водород взаимодействует с наиболее гидрогенизированным из этих атомов. Образуется 2-хлор пропан.
  2. В реакции присоединения молекулы воды гидроксил из ее состава подходит к менее гидрогенизированному углероду. Водород присоединяется к наиболее гидрогенизированному атому при двойной связи.

Существуют исключения из предложенного Марковниковым правила в тех реакциях, где реагентами выступают алкены, у которых углерод при двойной связи уже имеет рядом электроотрицательную группу. Она частично отбирает электронную плотность, к которой обычно притягивается положительно заряженный водород. Не соблюдается правило и в реакциях, идущих по радикальному, а не электрофильному механизму (эффект Хариша). Эти исключения не умаляют достоинств правила, выведенного выдающимся русским химиком-органиком В. В. Марковниковым.

fb.ru

При протекании любой реакции, необходимо, чтобы разорвались старые связи между атомами и образовались новые. По типу разрыва химической связи в исходной молекуле различают гомолитические и гетеролитические реакции.

Гомолитическими называются реакции, при которых в результате разрыва связей образуются частицы, имеющие неспаренный электрон — свободные радикалы:

Гетеролитическими называют реакции, протекающие через образование ионных частиц — катионов и анионов:

А : В > А + + :В —

Положительный ион в реакциях будет стремиться присоединить к себе электрон, т. е. будет вести себя как электрофильная частица. Отрицательный ион – так называемая, нуклеофильная частица будет атаковать центры с избыточными положительными зарядами.

Как определить по какому типу будет протекать разрыв?

1) Чем полярнее связь (чем больше разность ЭО атомов А и В), тем больше вероятность гетеролитического разрыва. Менее ЭО атом будет иметь +заряд – электрофильная частица, более электроотрицательный — отриц заряд – нуклеофильная частица.

2) Условия проведения реакции. Температура, свет способствует гомолитическому разрыву, образованию радикалов. А проведение реакций в полярном растворителе (вода) – способствует гетеролитическому разрыву. Наличие специальных катализаторов (кислот Льюиса), поляризующих химические связи, также обеспечивает гетеролитический разрыв.

Механизм электрофильного присоединения

Реакция гидрогалогенирования алкенов идет по механизму электрофильного присоединения с гетеролитическим разрывом связей.

Электрофильные («любящие электроны») реагенты, или короче, электрофилы – это частицы (катионы или молекулы), имеющие свободную орбиталь на внешнем электронном уровне (H + , CH3 + , Br + , Cl + , NO2 + , AlCl3 и т.п.)

Электрофилом в данном случае является протон Н + в составе молекулы галогеноводорода HX (X — галоген). К одному атому углерода присоединяется водород, к другому – хлор. В случае этилена нет разницы к какому атому присоединится водород, а к какому – хлор. А в случае пропена и других несимметричных УВ это имеет большое значение – т.к. получаются разные вещества.

Направление реакции присоединения галогеноводородов к алкенам несимметричного строения (например, к пропилену CH2=CH–СН3) определяется правилом Марковникова:

В реакциях присоединения полярных молекул типа НХ к несимметричным алкенам водород присоединяется к более гидрогенизированному атому углерода при двойной связи (т.е. атому углерода, связанному с наибольшим числом атомов водорода).

Так, в реакции HCl c пропиленом из двух возможных структурных изомеров 1-хлорпропана и 2-хлорпропана, образуется последний.

Правило Марковникова можно объяснить другим способом – с точки зрения смещения электронной плотности в молекуле или электронных эффектов. Алкильные группы обладают так называемым положительным индуктивным электронным эффектом (+I-эффектом).

Индуктивный эффект — смещение электронной плотности по цепи ?-связей, которое обусловлено различиями в электроотрицательностях атомов.

Например, в молекуле пропилена СН3–СН=СН2 метильная группа СН3 за счет суммирования небольшой полярности трех С–Н связей является донором электронов и проявляет +I-эффект по отношению к соседним атомам углерода. Это вызывает смещение подвижных p -электронов двойной связи в сторону более гидрогенизированного атома углерода (в группе СН2) и появлению на нем частичного отрицательного заряда. На менее гидрогенизированном атоме углерода (в группе СН) возникает частичный положительный заряд.

Поэтому присоединение электрофильной частицы Н + происходит к более гидрогенизированному углеродному атому, а электроотрицательная группа Х присоединяется к менее гидрогенизированному атому углерода. По этому катион водорода H + присоединяется к первому атому углерода, Сl — — ко второму, т.е к противоположным зарядам.

Присоединение против правила Марковникова

отмечается в случаях, когда заместитель при двойной связи оттягивает электронную плотность на себя, т.е. проявляет электроноакцепторные свойства (–I и/или –М-эффект).

Например, в реакции трихлорпропена Сl3C-CH=CH2 с HХ водород присоединяется к менее гидрогенизированному атому углерода, а Х – к более гидрогенизированному. Это обусловлено тем, что группа СCl3 проявляет отрицательный индуктивный эффект и электронная плотность пи-связи С=С смещена к менее гидрогенизированному атому углерода.

Сперва ответим на вопрос, почему алкены вступают в реакцию с электрофильными реагентами. Способность алкенов вступать в реакцию с электрофильными реагентами обусловлена повышенной электронной плотностью в области двойной связи (облако ?-электронов над и под плоскостью молекулы).

Электрофильное присоединение протекает в несколько стадий.

I стадия: образование ?-комплекса. ?-Электронное облако двойной связи С=С взаимодействует с электрофилом (катион водорода).

II стадия (лимитирующая): образование карбокатиона.
Электрофил (Н+) присоединяется к одному из атомов углерода за счет электронной пары ?-связи. На втором углеродном атоме, лишенном ?-электронов, появляется положительный заряд.

III стадия: взаимодействие карбокатиона с анионом (например Cl-, образовавшемся при диссоциации HCl) которое приводит к продукту реакции.

Правило Марковникова по другому можно выразить так — присоединение электрофила происходит таким образом, чтобы образовался наиболее стабильный (устойчивый) каброкатион. Это и есть современная формулировка правила Марковникова: электрофильное присоединение к двойной связи идет через образование наиболее устойчивого карбокатиона.

Теперь давайте посмотрим, какие карбокатионы устойчивые и почему.

Устойчивость карбокатионов увеличивается в данном ряду слева направо.

Наиболее устойчивый — третичиный карбокатион, менее устойчивый вторичный, ещё менее устойчивый – первичный, и самый неустойчивый – метильный. Это связано с тем, что чем больше электронодонорных алкильных групп (СН3) тем в большей степени происходит гашение положительного заряда на атоме углерода, что приводит к уменьшению энергии этой частицы и увеличению её устойчивости. Реакция идет в основном по тому пути, который требует минимальных энергетических затрат. При гидрокалогенировании пропена возможно образование двух карбокатионов – первичного и вторичного, но преимущественно будет образовываться именно вторичный карбокатион, а не первичный. И преобладающим продуктом будет 2-хлорпропан.

himege.ru

В.В. Марковников посвятил много лет изучению химических свойств алкенов, т.е. гомологов этилена. Им опытным путем (эмпирически) был установлен механизм протекания реакций гидратации и гидрогалогенирования несимметричных гомологов этилена. В настоящее время правило Марковникова звучит так: при присоединению к несимметричным алкенам молекул сложных веществ с условной формулой НХ (где Х – это атом I, Br, Cl, F или гидроксильная группа ОН-) атом водорода становится к наиболее гидрогенизированному (содержащему больше всего атомов водорода) атому углерода при двойной связи, а Х – к наименее гидрогенизированному.

Для того чтобы вам стал понятнее смысл правила Марковникова давайте рассмотрим его на конкретных примерах.

В данной реакции происходит присоединение к пропену хлороводорода с образованием 2-хлор пропана. Как вы видите в ходе этой реакции, произошел разрыв двойной связи и хлор присоединился к менее гидрогенизированному атому углерода, т.е. к тому у которого имеется меньше водородных связей, а водород соответственно к более гидрогенизированному.Аналогичным образом будет протеать и реакция гидротации, т.е. присоединения молекул воды.

Исключения из правила Марковникова

В некоторых случаях реакция присоединения протекает против правила Марковникова. Например, в случае если в реакцию вступают соединения, у которых атом углерода у двойной связи имеет сопряженную связь с электроотрицательной группировкой, оттягивающей на себя частично электронную плотность.

Присоединение против правила Марковникова будет наблюдаться и в химических реакциях с радикальным механизмом. Примером такой реакции является присоединение бромоводорода к олефинам. Эта реакция протекает в присутствии перекиси и называется еще эффектом Хариша. Рассмотрим эту реакцию подробнее: под воздействием перекиси из бромоводорода выделяется атомарный бром, который и является активной атакующей частицей. Данная реакция имеет свободно радикальный механизм и протекает в направлении образования наиболее стабильных вторичных радикалов.

При этом реакции по правилу Марковникова протекают с меньшими энергетическими затратами, чем присоединение идущее против этого правила.

elhow.ru

Марковникова правило: при присоединении протонных кислот или воды к несимметричным алкенам или алкинам атом водорода присоединяется к наиболее гидрогенизированному (гидрированному) атому углерода (в месте разрыва двойной связи). Названо по имени его автора В. В. Марковникова и сформулировано им в 1869 году.

Правило Марковникова объясняется +I-эффектом (положительным индуктивным электронным эффектом) алкильных групп. Например, в молекуле пропилена СН3–СН=СН2, метильная группа СН3, за счет суммирования небольшой полярности трех С–Н связей, является донором электронов и проявляет +I-эффект по отношению к соседним атомам углерода. Это вызывает смещение подвижных p-электронов двойной связи в сторону более гидрогенизированного атома углерода (в группе =СН2), и появлению на нем частичного отрицательного заряда ? — .

На менее гидрогенизированном атоме углерода (в группе -СН=) возникает частичный положительный заряд (? + ). Поэтому присоединение электрофильной частицы Н + происходит к более гидрогенизированному углеродному атому, а электроотрицательная группа Х присоединяется к менее гидрогенизированному атому углерода. Кроме того, следует учитывать также относительную устойчивость промежуточных частиц (карбокатионов), образующихся на лимитирующей стадии реакции, поскольку реакция идет в том направлении, на котором образуются наиболее устойчивые частицы и, соответственно, более низкая энергия активации.

Устойчивость карбокатиона возрастает с увеличением числа алкильных групп, которые за счет +I-эффекта уменьшают положительный заряд на атоме углерода:

Современная электронная трактовка правила Марковникова позволяет объяснить и ряд случаев присоединения против этого правила. Так, присоединение электрофильных и нуклеофильных агентов к соединениям с сопряжёнными связями, содержащим электроотрицательную группировку у атома углерода двойной связи, происходит против правила Марковникова в соответствии со смещением электронной плотности к наиболее электроотрицательным атомам, например:

Правило Марковникова нарушается также в реакциях присоединения HBr к олефинам в присутствии перекисей (эффект Хараша), так как механизм реакции в этом случае радикальный. Атакующей частицей является атомарный бром, а ориентация присоединения определяется стабильностью промежуточно образующегося углеродного свободного радикала:

Найдешь ли справедливость тут,
Где действуют двойные связи:
Где много водорода — так ещё дадут,
Где мало — так отнимут сразу!

dic.academic.ru

В отличие от симметричных электрофилов, галогеноводороды представляют собой несимметричные электрофильные реагенты. Присоединение любого несимметричного электрофила (HBr, ICl, H2O, Hg(OAc)2 и т.д.) к несимметричному алкену, в принципе, могло бы дать смесь альтернативных продуктов, однако на практике обычно образуется лишь один из них:

Еще в 1870 г. В.В. Марковников сформулировал эмпирическое правило, согласно которому несимметричные алкены присоединяют HX таким путем, что преимущественно образуется продукт, в котором H присоединяется к наименее замещенному, а X – к наиболее замещенному концу двойной связи.
Обычно правило Марковникова объясняют различием в стабильности двух альтернативных карбокатионов. Например, в приведенном выше примере нормальный пропильный катион значительно менее стабилен, чем изо-пропильный катион, и поэтому реакция идет по второму пути. В действительности мы, конечно, должны рассматривать относительную стабильность альтернативных переходных состояний стадии образования возможных продуктов. Однако, согласно постулату Хэммонда, распределение заряды в переходном состоянии не сильно отличается от распределения заряда в карбокатионе и поэтому объяснение правила Марковникова через относительную стабильность карбокатионов вполне приемлемо.

Правило Марковникова первоначально использовалось только для случая присоединения HX к углеводородным субстратам, но в принципе его можно распространить и на реакции других замещенных алкенов. Так, присоединение HCl к CF3CH=CH2 дает «анти-марковниковский» продукт CF3CH2CH2Cl. Этого и следовало ожидать, поскольку катион CF3CH+CH3 менее стабилен, чем катион CF3CH2CH2+ из-за сильного (-I)-эффекта CF3-группы. Преимущественно образуется катион CF3CH2CH2+, но он тоже дестабилизирован индуктивным эффектом группы CF3, вследствие чего присоединение HCl к трифторметилэтилену идет значительно медленнее, чем присоединение к незамещенному этилену.
По аналогичной причине катионы винилалкиламмония присоединяют HBr также против правила Марковникова:

Хлористый винил CH2=CH-Cl всегда дает исключительно «марковниковские аддукты», например, при реакции с HCl образуется только геминальный 1,1-дихлорэтан (гем-хлорид) CH3CHCl2. Хлор, аналогично CF3-группе, имеет сильный (-I)-эффект, и на первый взгляд кажется, что по этой причине присоединение должно иметь антимарковниковскую ориентацию, так как катион +CH2CH2Cl должен быть более стабильным, чем катион CH3CH+Cl. Однако в отличие от CF3-группы хлор обладает противодействующим индуктивному эффекту (+M)-эффектом (так как имеет неподеленные пары). Опыт показывает, что величина мезомерного эффекта вполне достаточна, чтобы понизить энергию 1-хлорэтильного катиона, в котором (+M)-эффект не проявляется:

Тем не менее присоединение к хлористому винилу происходит медленнее, чем к этилену в тех же условиях, т.е. по суммарному эффекту хлор остается электроноакцепторным заместителем по сравнению с водородом, а 1-хлорэтильный катион мене стабилен, чем C2H5+. Такое поведение хлористого винила совершенно аналогично поведению хлорбензола в реакциях электрофильного замещения.

Присоединение HX к алкенам, имеющим сильные (-M)-заместители, например к акрилонитрилу CH2=CH-C?N, должно идти против правила Марковникова. Однако в этом случае двойная связь настолько сильно дезактивирована по отношению к электрофильным реагентам, что эти реакции идут лишь в очень жестких условиях.
В следующем разделе мы дадим альтернативного объяснение правила Марковникова с позиций теории молекулярных орбиталей, а в заключение этого раздела отметим, что это правило применимо и к реакциям, протекающим через мостиковые галогенониевые ионы. Например, при бромировании пропилена в уксусной кислоте в качестве промежуточного продукта образуется 1-бром-2-изопропилацетат, а не изомерный 2-бром-1-пропилацетат:

В данном случае переходное состояние стадии образования конечного продукта имеет четко выраженный карбокатионный характер и поэтому образуется вторичный, а не первичный ацетат:

chembaby.com