Расчет цепи методом применения законов кирхгофа

Существует большое разнообразие цепей преобразующих ту или иную энергонесущую материю. Какова бы ни была энергонесущая материя (например, электрический ток), и в каком бы режиме ни функционировала преобразующая энергию цепь, существует ограниченный набор универсальных методов для их анализа и расчета. Цель расчета цепей состоит в уточнении величин токов и падений напряжения на элементах во всех режимах работы. Познакомимся с наиболее универсальными методами.

Каждое конкретное электрическое или электронное устройство описывается конкретной системой дифференциально-алгебраических уравнений. Сравнительный анализ большого количества математических описаний позволил выявить лишь три модели, которые признаны фундаментальными. Им соответствуют реально существующие, пассивные, преобразующие энергию элементы:

  • R — активное сопротивление (резистор)
  • L — реактивное сопротивление индуктивного характера (катушка)
  • C — реактивное сопротивление емкостного характера (конденсатор)

Преобразование электрической энергии R, L и C элементами описывается законом Ома. Форма записи закона Ома индивидуальна для каждого элемента:

Закон Ома наглядно демонстрирует, как физические величины первого и второго рода (ток и напряжение) связаны свойством преобразующего энергию элемента, т.е. активным индуктивным или емкостным сопротивлением.

Насколько бы сложной ни была энергопреобразующая электрическая цепь, и каким бы методом мы не пользовались для ее расчета — системы уравнений всегда составляются на основе этих формул. Существует большое количество чисто математических приемов, которые позволяют рассчитывать цепи (в том числе с L и C элементами) не прибегая к дифференциальному исчислению.

Законы Кирхгофа являются вариантом формулировки постулатов о сохранении материи и энергетического потенциала для электрических энергопреобразующих цепей. Введем определения.

Узел электрической цепи Место соединения трёх и более ветвей. В схемах электрических принципиальных обозначается точкой. Ветвь электрической цепи Участок электрической цепи, содержащий только последовательно включённые элементы. Контур электрической цепи Замкнутый путь, проходящий через несколько узлов и ветвей электрической цепи.

I закон Кирхгофа — является следствием закона сохранения заряда, согласно которому в любом узле заряд не может ни накапливатся, ни убывать. Закон формулируется как для цепей постоянного, так и для цепей переменного тока.

Для цепей постоянного тока алгебраическая сумма токов в узлах равна нулю.

Для цепей переменного тока геометрическая сумма токов в узлах равна нулю.

II закон Кирхгофа — является следствием закона сохранения энергии, в силу которого изменение потенциала в замкнутом контуре равно нулю. Закон формулируется как для цепей постоянного, так и для цепей переменного тока.

Для цепей постоянного тока алгебраическая сумма падений напряжения в контуре равна нулю.

Для цепей переменного тока геометрическая сумма падений напряжения в контуре равна нулю.

Опираясь на законы Ома и Кирхгофа можно рассчитать абсолютно любую электрическую цепь. Другие методы расчета цепей разработаны исключительно для уменьшения объема требуемых вычислений.

  1. Произвольно назначают направления токов в ветвях.
  2. Произвольно назначают направления обхода контуров.
  3. Записывают У — 1 уравнение по I закону Кирхгофа. (У — число узлов в цепи).
  4. Записывают В — У + 1 уравнение по II закону Кирхгофа. (В — число ветвей в цепи).
  • При составлении уравнений слагаемые берут со знаком «+» в случае, если направление обхода контура совпадает с направлением падения напряжения, тока или ЭДС. В противном случае со знаком «-«.
  • Если при решении системы уравнений будут получены отрицательные токи, то выбранное направление не совпадает с реальным.
  • Следует выбирать те контуры, в которых меньше всего элементов.

Правильность расчетов можно проверить, составив баланс мощностей. В электрической цепи сумма мощностей источников питания равна сумме мощностей потребителей:

Следует помнить, что тот или иной источник схемы может не генерировать энергию, а потреблять ее (процесс зарядки аккумуляторов). В таком случае направление тока, протекающего по участку с этим источником, встречное направлению ЭДС. Источники в таком режиме должны войти в баланс мощностей со знаком «-«.

Эквивалентные преобразования электрических цепей

Разнообразие и сложность преобразующих электрическую энергию схем мнимые. Существуют лишь четыре способа соединения электрических элементов:

  • последовательное соединение
  • параллельное соединение
  • соединение элементов звездой
  • соединение элементов треугольником

Основные принципы и свойства линейных цепей

Все методы расчета цепей были разработаны на базе фундаментальных принципов функционирования энергопреобразующих цепей и их общих свойств. Познакомимся с их сутью:

Действие любого количества источников электрической энергии на линейную электрическую цепь независимо. Ток в любой ветви схемы равен алгебраической сумме токов, вызываемых каждым источником в отдельности.

Любой пассивный участок цепи (ветвь или ее часть) с известным напряжением может быть замещён источником ЭДС соответствующего номинала, а любая ветвь цепи с известным током может быть замещена источником тока той же величины. Режим работы оставшихся элементов при этом не изменится.

Для любой линейной электрической цепи ток, протекающий в какой-то k-той ветви, который вызван действием ЭДС, находящейся в ветви m, будет равен току, протекающему в ветви m, вызванному действием ЭДС, находящейся в ветви k, которая численно равна первой ЭДС.

Электрические цепи, для которых этот принцип не соблюдается, называются необратимыми цепями. К ним относятся нелинейные цепи.

Свойство однозначности состояния

Линейные электрические цепи обладают свойством однозначности электрического состояния всех элементов.

Многие методы расчета цепей в своей основе опираются на особые, часто встречающиеся и легко идентифицируемые техническими средствами режимы работы энергопреобразующих цепей. Познакомимся с ними:

Достаточно часто, до использования того или иного метода расчета цепей требуется несущественная предварительная трансформация электрической схемы, которая заключается в эквивалентной замене всех источников тока источниками ЭДС или наоборот. Познакомимся с сутью этих трансформаций:

Метод эквивалентных преобразований

Метод эквивалентных преобразований используется в случае, если цепь содержит лишь один источник электрической энергии. Если это не так, то можно пользоваться принципом суперпозиции, однако придется повторить расчеты столько раз, сколько источников содержит цепь (в таких случаях другие методы потребуют меньше вычислений).

  1. С помощью эквивалентных преобразований сводят схему к одному эквивалентному сопротивлению, подключенному к источнику.
  2. Уточняют первый неизвестный ток (потребляемый схемой от источника).
  3. С помощью обратных преобразований, постепенно восстанавливают схему, попутно уточняя неизвестные токи и напряжения.

Метод пропорциональных величин

Метод эквивалентного генератора

Метод применяется в тех случаях, когда число уравнений, которые должны быть записаны для электрической цепи на основании II-го закона Кирхгофа, меньше, чем число уравнений, которые должны быть записаны на основании I-го закона Кирхгофа.

При расчёте методом контурных токов полагают, что в каждом независимом контуре схемы течет свой контурный ток. Уравнения составляют и решают относительно контурных токов. Токи в смежных ветвях уточняют по принципу суперпозиции. Число неизвестных в методе равно числу уравнений, которые необходимо было бы составить по II закону Кирхгофа.

  1. Выбор К контуров с минимальным количеством элементов (К = В — У + 1).

Рекомендации к применению метода:

  • Контурные токи желательно направлять в одном направлении.
  • Если требуется определить ток только в одной ветви, то этот ток целесообразно делать контурным.
  • Если в схеме есть ветвь с известным током (например, с источником тока), то этот ток следует сделать контурным, в результате число уравнений уменьшится.

Линейные цепи постоянного тока

Электрическая цепь – совокупность электротехнических устройств, обеспечивающий замкнутый контур для электрического тока (направленное движение заряженных частиц).

Ток: – количество электричества через единицу площади поперечного сечения за единицу времени – постоянный ток.

– мгновенное значение тока – переменный ток.

Напряжение – работа, совершаемая электрическим полем по перемещению заряда от точки высшего потенциала к точке нижнего потенциала.

Основными элементами цепи являются: источники, потребители, соединительные провода, измерительные приборы, коммутационный аппарат.

Источник – устройство, преображающее различные виды энергии в электрическую.

Основной вид – генератор: преобразует механическую энергию в электрическую.

Гальванический элемент (батарея): преображает энергию химической реакции в электрическую.

Каждый источник характеризуется тремя параметрами:

ЭДС источника [E] – работа сторонних сил по перемещению заряда от точки низшего потенциала к точке высшего потенциала.

Внешнее сопротивление источника [ro].

КПД источника [?]:

Следует помнить, что мы рассматриваем только источники напряжения!

мощность потерь в самом источнике

Потребители – устройства, преобразующие электрическую энергию в другие.

электрическую энергию в механическую.

электрическую энергию в тепловую (печи сопротивления, нагревательные печи).

электрическую энергию в световую и тепловую ( электрическая лампа).

Соединительные провода характеризуются сопротивлением:

Измерительные приборы: амперметр включают с нагрузкой:

Напряжение измеряется вольтметром, который включается параллельно нагрузке. Сопротивление обмотки должно быть больше, чем сопротивление нагрузки.

Активная мощность имеет токовую обмотку и обмотку напряжения, начала которых соединены в одну точку.

Коммутационный аппарат: замыкает и размыкает цепь.

Режимы работы электрической цепи

  • Режим холостого хода.
  • Номинальный (рабочий) режим.
  • Режим короткого замыкания.
  • Согласованный режим.

Желательно исключить такие режимы.

Это тот режим , для которого и предназначена электрическая цепь. В этом режиме она может работать сколь угодно долго, и температура всех элементов цепи не будет превышать допустимого значения.

Это аварийный режим.

Это режим, при котором во внешней цепи передается максимальная активная мощность при заданной мощности источника.

Методы расчета линейных цепей постоянного тока

Основные законы электрических цепей:

  • Закон Ома — может быть применен для участка электрической цепи и полной электрической цепи.
  • Закон Кирхгофа

Узел электрической цепи – точка, в которой сходятся не менее трех токов.

Ветвь электрической цепи – участок цепи, составленный последующим соединением из сопротивлений, источников, на которых протекает один и тот же ток.

Ветвь – это участок цепи между двумя узлами.

I закон Кирхгофа: алгебраическая сумма токов сходится в одном узле и равна нулю.

II закон Кирхгофа: В любом замкнутом контуре алгебраическая сумма ЭДС, входящих в этот контур, равна алгебраической сумме падений напряжений на всех участках этого контура. При составлении уравнений условно задаются направлением обхода контура. И ЭДС, совпадающая с обходом контура, берется со знаком «+», а не совпадающая – со знаком «-«.

При симметрии падений напряжений те напряжения, на участке которых ток совпадает с направлением обхода, берутся со знаком «+», а те напряжения, на участке которых ток не совпадает с направлением обхода, соответственно со знаком «-«.

Простейшей цепью называется цепь, содержащая один источник питания.

Рассмотрим виды соединения простейших электрических цепей.

model.exponenta.ru

Расчет электрической цепи методом непосредственного применения законов Кирхгофа

Согласно первому закону Кирхгофа алгебраическая сумма токов ветвей, сходящихся в узле, равна нулю:

Согласно второму закону Кирхгофа алгебраическая сумма напряжений на резистивных элементах замкнутого контура равна алгебраической сумме ЭДС, входящих в этот контур.

Расчет многоконтурной линейной электрической цепи, имеющей «b» ветвей с активными и пассивными элементами и «у» узлов, сводится к определению токов отдельных ветвей и напряжений на зажимах элементов, входящих в данную цепь.

Пассивной называется ветвь, не содержащая источника ЭДС. Ветвь, содержащая источник ЭДС, называется активной.

1-й закон Кирхгофа применяют к независимым узлам, т.е. таким, которые отличаются друг от друга хотя бы одной новой ветвью, что позволяет получить (y — I) уравнений.

Недостающие уравнения в количестве b — (у — I) составляют, исходя из второго закона Кирхгофа. Уравнение записывают для независимых контуров, которые отличаются один от другого, по крайней мере, одной ветвью.

Порядок выполнения расчета:

  1. выделяют в электрической цепи ветви, независимые узлы и контуры;
  2. с помощью стрелок указывают произвольно выбранные положительные направления токов в отдельных ветвях, а также указывают произвольно выбранное направление обхода контура;
  3. составляют уравнения по законам Кирхгофа, применяя следующее правило знаков:
    1. токи, направленные к узлу цепи, записывают со знаком «плюс», а токи, направленные от узла,- со знаком «минус» (для первого закона Кирхгофа);
    2. ЭДС и напряжение на резистивном элементе (RI) берутся со знаком»плюс», если направления ЭДС и тока в ветви совпадают с направлением обхода контура, а при встречном направлении — со знаком «минус»;
  4. решая систему уравнений, находят токи в ветвях. При решении могут быть использованы ЭВМ, методы подстановки или определителей.

Отрицательные значения тока какой-либо ветви указывают на то, что выбранные ранее произвольные направления тока оказались ошибочными. Это следует учитывать, например, при построении потенциальной диаграммы, где следует знать истинное направление тока.

На рис. 4, а изображена исходная электрическая схема, для которой следует рассчитать токи в ветвях. Направления токов и обхода контуров приведены на рис. 4, б.

Система уравнений, составленных по первому и второму законам Кирхгофа, имеет вид

www.dprm.ru

Законы Кирхгофа — формулы и примеры использования

Законы Кирхгофа устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа. Законы Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Законы Кирхгофа справедливы для линейных и нелинейных цепей при постоянных и переменных напряжениях и токах.

Первый закон Кирхгофа вытекает из закона сохранения заряда. Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю.

где – число токов, сходящихся в данном узле. Например, для узла электрической цепи (рис. 1) уравнение по первому закону Кирхгофа можно записать в виде I1 — I2 + I3 — I4 + I5 = 0

В этом уравнении токи, направленные к узлу, приняты положительными.

Физически первый закон Кирхгофа – это закон непрерывности электрического тока.

Второй закон Кирхгофа: алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii , Ri – ток и сопротивление i -й ветви.

Так, для замкнутого контура схемы (рис. 2 ) Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4

Замечание о знаках полученного уравнения:

1) ЭДС положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;

2) падение напряжения на резисторе положительно, если направление тока в нем совпадает с направлением обхода.

Физически второй закон Кирхгофа характеризует равновесие напряжений в любом контуре цепи.

Расчет разветвленной электрической цепи с помощью законов Кирхгофа

Метод законов Кирхгофа заключается в решении системы уравнений, составленных по первому и второму законам Кирхгофа.

Метод заключается в составлении уравнений по первому и второму законам Кирхгофа для узлов и контуров электрической цепи и решении этих уравнений с целью определения неизвестных токов в ветвях и по ним – напряжений. Поэтому число неизвестных равно числу ветвей b , следовательно, столько же независимых уравнений необходимо составить по первому и второму законам Кирхгофа.

Число уравнений, которые можно составить на основании первого закона, равно числу узлов цепи, причем только ( y – 1) уравнений являются независимыми друг от друга.

Независимость уравнений обеспечивается выбором узлов. Узлы обычно выбирают так, чтобы каждый последующий узел отличался от смежных узлов хотя бы одной ветвью. Остальные уравнения составляются по второму закону Кирхгофа для независимых контуров, т.е. число уравнений b — (y — 1) = b — y +1 .

Контур называется независимым, если он содержит хотя бы одну ветвь, не входящую в другие контуры.

Составим систему уравнений Кирхгофа для электрической цепи (рис. 3 ). Схема содержит четыре узла и шесть ветвей.

Поэтому по первому закону Кирхгофа составим y — 1 = 4 — 1 = 3 уравнения, а по второму b — y + 1 = 6 — 4 + 1 = 3 , также три уравнения.

Произвольно выберем положительные направления токов во всех ветвях (рис. 4 ). Направление обхода контуров выбираем по часовой стрелке.

Составляем необходимое число уравнений по первому и второму законам Кирхгофа

Полученная система уравнений решается относительно токов. Если при расчете ток в ветви получился с минусом, то его направление противоположно принятому направлению.

Потенциальная диаграмма – это графическое изображение второго закона Кирхгофа, которая применяется для проверки правильности расчетов в линейных резистивных цепях. Потенциальная диаграмма строится для контура без источников тока, причем потенциалы точек начала и конца диаграммы должны получиться одинаковыми.

Рассмотрим контур abcda схемы, изображенной на рис. 4. В ветке ab между резистором R1 и ЭДС E1 обозначим дополнительную точку k.

Рис. 4. Контур для построения потенциальной диаграммы

Потенциал любого узла принимаем равным нулю (например, ?а= 0), выбираем обход контура и определяем потенциалы точек контура: ?а = 0, ?к = ?а — I1R1 , ? b = ? к + Е1, ?с = ? b — I2R2 , ? d = ?c — Е2, ? a = ?d + I3R3 = 0

При построении потенциальной диаграммы необходимо учитывать, что сопротивление ЭДС равно нулю (рис. 5 ).

Рис. 5. Потенциальная диаграмма

Законы Кирхгофа в комплексной форме

Для цепей синусоидального тока законы Кирхгофа формулируются так же, как и для цепей постоянного тока, но только для комплексных значений токов и напряжений.

Первый закон Кирхгофа : «алгебраическая сумма комплексов тока в узле электрической цепи равна нулю»

Второй закон Кирхгофа : «в любом замкнутом контуре электрической цепи алгебраическая сумма комплексных ЭДС равна алгебраической сумме комплексных напряжений на всех пассивных элементах этого контура».

electricalschool.info

Определение токов во всех ветвях цепи с применением законов Кирхгофа

Метод узловых и контурных уравнений основан на применении первого и второго законов Кирхгофа. Он не требует никаких преобразований схемы и пригоден для расчета любой цепи.

При расчете данным методом произвольно задаем направление токов в

Составляем систему уравнений. В системе должно быть столько уравнений, сколько цепей в ветвях (неизвестных токов).

В заданной цепи пять ветвей, значит, в системе должно быть пять уравнений (m=5). Сначала составляем уравнения для узлов по первому закону Кирхгофа. Для цепи с п узлами можно составить (n-1) независимых уравнений. В нашей цепи три узла (А,В,С), значит, число уравнений:

n-1 =3 — 1=2. Составляем три уравнения для любых 2-х узлов, например, для узлов 1 и 2.

Всего в системе должно быть пять уравнений. Два уже есть. Три недостающих составляем для линейно независимых контуров. Чтобы они были независимыми, в каждый следующий контур надо включить хотя бы одну ветвь, не входящую в предыдущую.

Задаемся обходом каждого контура и составляем уравнения по второму закону Кирхгофа.

Контур АДСВА — обход по часовой стрелке

Контур АВА’А — обход по часовой стрелке

Контур А’СВА’ — обход против часовой стрелки

ЭДС в контуре берется со знаком «+», если направление ЭДС совпадает с обходом контура, если не совпадает — знак «-«.

Падение напряжения на сопротивлении контура берется со знаком «+», если направление тока в нем совпадает с обходом контура, со знаком «-«, если не совпадает.

Мы получили систему из пяти уравнений с шестью неизвестными:

Решив систему, определим величину и направление тока во всех вет­вях схемы.

Если при решении системы ток получается со знаком «-«, значит его действительное направление обратно тому направлению, которым мы за­дались.

Необходимо подставить значения и решить систему уравнений.

2.Определение токов во всех ветвях цепи с использованием метода контур­ных токов

Метод контурных токов основан на использовании только второго за­кона Кирхгофа. Это позволяет уменьшить число уравнений в системе на n — 1 .

Достигается это разделением схемы на ячейки (независимые конту­ры) и введением для каждого контура-ячейки своего тока — контурного тока, являющегося расчетной величиной.

Итак, в заданной цепи (рис. 1.38) можно рассмотреть три контура-ячейки (АДСВА, АВА’А, А’СВА’) и ввести для них контурные токи Ik1, Ik2, Ik3.

Контуры-ячейки имеют ветвь, не входящую в другие контуры — это внешние ветви. В этих ветвях контурные токи являются действительными токами ветвей.

Ветви, принадлежащие двум смежным контурам, называются смежными

ветвями. В них действительный ток равен алгебраической сумме контурных токов смежных контуров, с учетом их направления.

При составлении уравнений по второму закону Кирхгофа в левой части равенства алгебраически суммируются ЭДС источников, входящих в контур-ячейку, в правой части равенства алгебраически суммируются напряжения на сопротивлениях, входящих в этот контур, а также учитывает­ся падение напряжения на сопротивлениях смежной ветви, определяемое по контурному току соседнего контура.

На основании вышеизложенного порядок расчета цепи методом кон­турных токов будет следующим:

стрелками указываем выбранные направления контурных токов Ik1, Ik2, Ik3 в контурах-ячейках. Направление обхода контуров принимаем таким же;

составляем уравнения и решаем систему уравнений или методом подстановки, или с помощью определителей.

Подставляем в уравнение численные значения ЭДС и сопротивлений.

Сократив первое уравнение на 4, второе на 4, третье на 10, получим:

Решим систему с помощью определителей. Вычислим определитель системы ? и честные определители ?1, ?2, ?3.

studopedia.ru

Расчет цепи методом применения законов кирхгофа

Для расчета разветвленной электрической цепи произвольного вида существенное значение имеет число ветвей и узлов.

Ветвью электрической цепи называется такой ее участок, который состоит только из последовательно включенных источников

э. д. с. и сопротивлений и вдоль которого протекает один и тот же ток. Узлом электрической цепи называется место (точка) соединения трех и более ветвей. Узлом электрической цепи иногда называется точка соединения двух и более ветвей. Однако, как видно из приведенного выше определения ветви, каждая узловая точка, к которой присоединены только две ветви (она и образует их последовательное соединение), всегда может быть устранена (такие узлы иногда называют устранимыми); в результате в схеме остаются узлы только с тремя и более ветвями.

При обходе по соединенным в узлах ветвям можно получить замкнутый контур электрической цепи; каждый контур представляет собой замкнутый путь, проходящий по нескольким ветвям; при этом каждый узел в рассматриваемом контуре встречается не более одного раза.

На рис. 1-17 в качестве примера показана электрическая цепь с пятью узлами и девятью ветвями. В частных случаях встречаются ветви только с сопротивлениями, без э. д. с. (ветвь ) и с сопротивлениями, практически равными нулю (ветвь ). Так как напряжение на зажимах ветви равно нулю (сопротивление равно нулю), то потенциалы точек одинаковы и оба узла можно объединить в один.

Режим электрической цепи произвольной конфигурации полностью определяется первым и вторым законами Кирхгофа.

Первый закон Кирхгофа применяется к узлам и формулируется следующим образом: алгебраическая сумма токов в изле равна нулю, т. е.

В этом уравнении одинаковые знаки должны быть взяты для токов, имеющих одинаковые положительные направления относительно узловой точки. В дальнейшем будем в уравнениях, составленных по первому закону Кирхгофа, записывать токи, которые направлены к узлу, с отрицательными знаками, а направленные от узла — с положительными 1.

Если к данному узлу присоединен источник тока, то ток этого источника также должен быть учтен. В дальнейшем будет показано, что в ряде случаев целесообразно писать в одной части равенства

(1-19) алгебраическую сумму токов в ветвях, а в другой части — алгебраическую сумму токов, обусловленных источниками токов:

где — ток одной из ветвей, присоединенной к рассматриваемому узлу, ток одного из источников тока, присоединенного к тому же самому узлу; этот ток входит в уравнение (1-19а) с положительным знаком, если направлен к узлу, и с отрицательным, если направлен от узла.

Второй закон Кирхгофа применяется к контурам электрической цепи и формулируется следующим образом: в любом замкнутом контуре алгебраическая сумма напряжений на сопротивлениях, входящих в этот контур, равна алгебраической сумме э. д. с., т. е.

В этом уравнении положительные знаки принимаются для токов и э. д. с., положительные направления которых совпадают с произвольно выбранным направлением обхода рассматриваемого контура.

Часто применяется другая формулировка второго закона Кирхгофа: в любом контуре алгебраическая сумма напряжений на зажимах ветвей, входящих в этот контур, равна нулю:

При этом положительные направления для напряжений на зажимах ветвей выбираются произвольно; в равнении (1-20а) положительные знаки принимаются для тех напряжений, положительные направления которых совпадают с произвольно выбранным направлением обхода контура.

В теории электрических цепей решаются задачи двух типов.

К первому типу относятся задачи анализа электрических цепей, когда, например, известны конфигурация и элементы цепи, а требуется определить токи, напряжения и мощности тех или иных участков. Ко второму типу относятся обратные задачи, в которых, например, заданы токи и напряжения, а требуется найти конфигурацию цепи и выбрать ее элементы. Такие задачи называются задачами синтеза электрических цепей. Отметим, что решение задач анализа намного проще решения задач синтеза.

В практической электротехнике довольно часто встречаются задачи анализа. Кроме того, для овладения приемами синтеза цепей необходимо предварительно изучить методы их анализа, которые преимущественно и будут в дальнейшем рассматриваться.

Задачи анализа могут быть решены при помощи законов Кирхгофа. Если известны параметры всех элементов цепи и ее конфигурация, а требуется определить токи, то при составлении уравнений по законам Кирхгофа рекомендуется придерживаться такой последовательности:

довательности: сначала выбрать произвольные положительные направления токов во всех ветвях электрической цепи, затем составить уравнения для узлов на основании первого закона Кирхгофа и, наконец, составить уравнения для контуров на основании второго закона Кирхгофа.

Пусть электрическая цепь содержит в ветвей и у узлов. Покажем, что на основании первого и второго законов Кирхгофа можно составить соответственно и в взаимно независимых уравнений, что в сумме дает необходимое и достаточное число уравнений для определения в токов (во всех ветвях).

На основании первого закона Кирхгофа для у узлов (рис. 1-17) можно написать у уравнений:

Так как любая ветвь связывает между собой только два узла, то ток каждой ветви должен обязательно войти в эти уравнения два раза, причем и т. д.

Следовательно, сумма левых частей всех у уравнений дает тождественно нуль. Иначе говоря, одно из у уравнений может быть получено как следствие уравнений или число

взаимно независимых уравнений, составленных на основании первого закона Кирхгофа, равно , т. е. на единицу меньше числа узлов. Например, в случае цепи по рис. 1-18, а с четырьмя узлами

Суммируя эти уравнения, получим тождество следовательно, из этих четырех уравнений только три независимые.

Так как беспредельное накопление электрических зарядов не может происходить как в отдельных узлах электрической цепи, так и в любых ее частях, ограниченных замкнутыми поверхностями, то первый закон Кирхгофа можно применить не только к какому-либо узлу, но и к любой замкнутой поверхности (что уже было отмечено выше).

Например, для поверхности S (рис. 1-18, а), как бы рассекающей электрическую схему на две части, справедливо уравнение что можно также получить из уравнений (1-21а) для узлов 3 и 4.

Чтобы установить число взаимно независимых уравнений, вытекающих из второго закона Кирхгофа, напишем для всех в ветвей схемы (рис. 1-17) в уравнений на основании закона Ома:

где — сопротивление ветви, соединяющей узлы ,

— суммарная э. д. с , действующая в ветви в направлении от к у;

— потенциалы узлов и у.

В этих уравнениях суммарное число неизвестных токов в ветвей и потенциалов у узлов равняется в у.

Не изменяя условий задачи, можно принять потенциал одного из узлов равным любой величине и, в частности, нулю. Если теперь из системы в уравнений (1-22) исключить оставшиеся неизвестными потенциалов, то число уравнений уменьшится до в —

Но исключение потенциалов из уравнений (1-22) приводит к уравнениям, связывающим э. д. с. источников с напряжениями на сопротивлениях. т. е. к уравнениям, составленным на основании второго закона Кирхгофа.

Таким образом, число взаимно независимых уравнений, которые можно составить на основании второго закона Кирхгофа, равно

В качестве примера напишем уравнения, связывающие потенциалы узлов с токами и э. д. с. для схемы рис. 1-18, а:

Складывая третье и четвертое уравнения и вычитая полученную сумму из первого, получаем:

Если применим второй закон Кирхгофа (1-20) к контуру 1-4-2-1 (при обходе вдоль контура по направлению движения часовой стрелки), то получим это же уравнение.

Аналогичным путем можно получить уравнения для остальных контуров:

для контура 2-3-4-2

Совместное решение любых трех уравнений (1-21а) и уравнений (1-23) и (1 -24) дает значения токов во всех ветвях электрической цепи, показанной на рис. 1-18, а. Если в результате решения этих уравнений получится отрицательное значение для какого-либо тока, то это значит, что действительное направление противоположно принятому за положительное.

При записи уравнений по второму закону Кирхгофа следует обращать особое внимание на то, чтобы составленные уравнения были взаимно независимы. Контуры необходимо выбрать так, чтобы в них вошли все ветви схемы, а в каждый из контуров — возможно меньшее число ветвей. Контуры взаимно независимы, если каждый последующий контур, для которого составляется уравнение, имеет не меньше одной новой ветви и не получается из контуров, для которых уже написаны уравнения, путем удаления из этих контуров общих ветвей.

Например, контур 1-3-4-2-1 (рис. 1-18, а) можно получить из контуров 1-3-2-1 и 2-3-4-2 путем удаления ветви 2-3. Поэтому уравнение для контура 1-3-4-2-1 является следствием уравнений (1-24) и получается путем их суммирования.

Вторым законом Кирхгофа можно пользоваться для определения напряжения между двумя произвольными точками схемы.

В этом случае необходимо ввести в левую часть уравнений (1-20) искомое напряжение вдоль пути, как бы дополняющего незамкнутый контур до замкнутого. Например, для определения напряжения

(рис. 1-18, а) можно написать уравнение для контура 2-1-5-2

или для контура 5-4-2-5

откуда легко найти искомое напряжение.

При изложении методов расчета электрических цепей иногда целесообразно применять некоторые топологические понятия, к числу которых относятся, в частности, неориентированный и ориентированный графы.

Как следует из первого закона Кирхгофа (1-19), вид уравнений зависит не от элементов ветвей, соединенных в узлах, а от геометрической структуры самих соединений. Аналогичный смысл имеет уравнение (1 -20а), выражающее второй закон Кирхгофа, поскольку в эти уравнения в отличие от уравнений (1-20) элементы ветвей (э. д. с., сопротивления) не входят. Однако сами токи и напряжения зависят не только от геометрической структуры цепи, но и от элементов соответствующих ветвей, что непосредственно следует из закона Ома для участка цепи с э. д. с. (1-12).

Таким образом, для характеристики геометрической структуры схемы электрической цепи можно воспользоваться графом, линейные отрезки которого, часто называемые ветвями (ребрами), изображает ветви схемы электрической цепи. На рис. 1-18, б показан ненаправленный (неориентированный) граф для электрической схемы, изображенной на рис. 1-18, а. При этом каждый из отрезков — ветвей этого графа (рис. 1-18, б) соответствует определенной ветви электрической схемы (рис. 1-18, а).

Направленным (ориентированным) графом называется такой, у которого каждая ветвь имеет определенное направление (ориентацию). Для графов электрических схем направление (ориентация) ветвей, как правило, совпадает с положительными направлениями токов и напряжений, которые выбраны при составлении уравнений состояния электрических цепей.

Для той же электрической схемы (рис. 1-18, а) показан направленный граф на рис. 1-18, в, у которого направления ветвей совпадают с положительными направлениями токов и напряжений.

Для направленного графа рис. 1-18, в можно написать уравнения на основании первого (1-19) и второго (1-20а) законов Кирхгофа в следующем виде:

При этом первые четыре уравнения совпадают с уравнениями (1 -21 а), а последние три уравнения можно преобразовать в уравнения (1-23) и (1-24) при помощи закона Ома для участка цепи с э. д. с. (1-12).

Например, из схемы (рис. 1-18, а) следует, что

после замены напряжений в уравнении для контура 1-4-2-1 (рис. 1-18, в) их правыми частями получается выражение, совпадающее с уравнением (1-23).

Отметим, что концевые точки ветвей графа называются узлами (вершинами).

Для полной характеристики электрического состояния цепи надо знать не только токи и напряжения, но также мощности источников и приемников энергии.

В соответствии с законом сохранения энергии развиваемая источниками энергия равна энергии, потребляемой приемниками. Из этого положения следует, что для любой электрической цепи с источниками э. д. с. алгебраическая сумма мощностей, развиваемых источниками э. д. с., равна сумме мощностей, потребляемых всеми сопротивлениями (в том числе внутренними сопротивлениями источников энергии):

Если действительные направления э. д. с. и тока в некоторой ветви совпадают, то мощность такого источника э. д. с. входит в уравнение (1-25) с положительным знаком и источник отдает энергию в цепь (работает в режиме генератора). Если направления э. д. с. и тока в ветви противоположны, то мощность источника э. д. с. записывается в уравнении (1-25) с отрицательным знаком и такой источник работает в режиме приемника, потребляя энергию.

Отметим, что уравнение (1-25) может быть получено также из законов Кирхгофа (1-19) и (1-20).

Матричная форма записи уравнений Кирхгофа. Если электрическая цепь состоит из в ветвей, то на основании (1-19а) и (1-20) можно в общем случае записать в независимых алгебраических уравнений электрического состояния цепи в следующем виде:

Поскольку эти уравнения получены на основании двух разных законов, то они не однотипны. В узловых уравнениях, вытекающих из первого закона Кирхгофа (1-19а), коэффициенты не имеют размерности и, очевидно, могут принимать только значения ±1 или 0. Правые части в этих уравнениях имеют размерность тока и равны нулю, если к соответствующему узлу не подключены источники тока.

В контурных уравнениях, вытекающих из второго закона Кирхгофа (1-20), коэффициенты имеют размерность сопротивления,

а величины размерность потенциала и равны нулю, если в контуре нет э. д. с. Если ветвь входит в контур, для которого составляется уравнение, то, очевидно, должно быть а если не входит — . Здесь сопротивление ветви, входящей в контур.

Уравнения (1-26) можно записать в более общей матричной форме:

где а — квадратная матрица коэффициентов, т. е.

I — матрица-столбец токов ветвей, т. е.

и F — матрица-столбец активных параметров, т. е.

Например, для схемы рис. 1-18, а первые три уравнения (1 -21 а), а также уравнения (1-23) и (1-24) можно записать в матричной форме, если принять:

Справедливость приведенной записи легко проверить, подставив матрицы а, I и F в уравнение (1-27).

Пример 1-2. Пользуясь законами Кирхгофа, написать два выражения для тока в ветви с гальванометром (рис. 1-19), принимая в одном случае известным а в другом — напряжение

Решение На основании законов Кирхгофа напишем для заданной схемы с шестью неизвестными токами уравнения:

Решая совместно эти уравнения, получаем выражение для тока через напряжение

stu.alnam.ru